Բջիջ

Վիքիպեդիայից՝ ազատ հանրագիտարանից

Բջիջ (լատ.՝ cellula՝ խորշիկ, բջիջ, հունարեն՝ ցիտոս՝ անոթ, բջիջ), համարվում է բոլոր կենդանի օրգանիզմների կառուցվածքի, ֆունկցիայի և գենետիկական տարրական միավորը։ Բջիջը, որպես օրգանիզմի կառուցվածքի տարրական միավոր, օժտված է կենդանի նյութին բնորոշ հատկություններով, որոնք պահպանում ու փոխանցվում են հաջորդ սերունդներին։

Շատ միկրոօրգանիզմներ (օրինակ՝ բակտերիաները, որոշ ջրիմուռներ ու սնկեր, նախակենդանիները) կազմված են 1 բջջից: Բազմաբջիջ օրգանիզմները, որոնցից են բարձրակարգ բույսերն ու կենդանիները, այդ թվում և մարդը, կազմված են մեծ քանակությամբ բազմազան բջիջներից, որոնք միավորված են հյուսվածքներում ու օրգաններում: Օրինակ՝ մարդու օրգանիզմը բաղկացած է մոտ 1014 բջիջներից: Վերջիններիս կենսագործունեությունը հնարավոր է էներգիայի արտաքին աղբյուրների և քիմիական նյութերի օգտագործման շնորհիվ, որն անհրաժեշտ է բարդ կազմավորված ու փոխադարձ կապված բջջային կառուցվածքների սինթեզի և վերականգման, ինչպես նաև մասնագիտացված ֆունկցիաների կատարման համար:

Ուսումնասիրման պատմություն[խմբագրել]

Բջիջը հայտնաբերել է անգլիացի գիտնական Ռոբերտ Հուկը 1665 թվականին: Պարզագույն կառուցվածք ունեցող մանրադիտակով խցանի բարակ կտրվածքում նա հայտնաբերեց խորշիկներ, որոնց և անվանեց բջիջներ (լատ.՝ cellula - խորշիկ, բջիջ)

«Բջիջ» հասկացությունն առաջարկել է անգլիացի գիտնական Ռոբերտ Հուկը 1665 թվականին: Մանրադիտակի տակ դիտելով բույսերի խցանային հյուսվածքի նուրբ կտրվածքները՝ նա նկատեց, որ հյուսվածքը կազմված է մանր խորշիկներից, որոնք միմյանցից անջատված են միջնապատերով: Դրանք նա անվանեց բջիջներ: Հետագայում անգլիացի գիտնական Գրյուն և իտալացի Մարչելո Մալպիգին (1672) մանրադիտակային «պարկիկներ» (բջիջներ) հայտնաբերեցին բույսերի տարբեր օրգաններում: 1680 թվականին հոլանդացի գիտնական Անտոն Վան Լևենհուկն իր պատրաստած տեսապակիների օգնությամբ, հայտնաբերեց բազմաթիվ միաբջիջ օրգանիզմներ, ինչպես նաև էրիթրոցիտներ, մազանոթներ, սպերմատոզոիդներ։ 1825 թվականին չեխ գիտնական Պուրկինեն, ցույց տվեց, որ բջիջն ունի հեղուկ պարունակություն՝ պրոտոպլազմա և հայտնաբերեց բջջակորիզը։ 1826 թվականին Կարլ Բերը հայտնաբերեց կաթնասունների ձվաբջիջը։ Անգլիացի բուսաբան Ռ. Բրոունը խոլորձի բջիջներում նկարագրեց (1831) գնդաձև կառուցվածքներ, որոնց անվանեց կորիզ: 1839 թվականին գերմանացի բուսաբան Մատիաս Շլեյդեն և կենդանաբան Թեոդոր Շվանը սահմանեցին բջջային տեության դրույթները, նրանք նաև ապացուցեցին, որ նույն կառուցվածքը և ֆունկցիան ունեցող բջիջները միանալով, առաջացնում են հյուսվածքներ։[1]

Բջջային տեսություն[խմբագրել]

    1rightarrow.png Հիմնական հոդված՝ Բջջային տեսություն

Կուտակված փաստանյութերի վրա Շլեյդենը և Շվանը 1838-1839 թվականներին ձևակերպեցին բջջային տեսությունը, որը հետագայում զարգացրեց Վիրխովը։ Այժմյան բջջային տեսության հիմնադրույթները կայանում են հետևյալում՝ բոլոր օրգանիզմները կազմված են բջիջներից (բացառությամբ կյանքի ոչ բջջային ձևերի), և որ բջիջը կյանքի ձևերի համար հանդիսանում է կառուցվածքային, ֆունկցիոնալ, գենետիկական տարրական միավորը։ Բույսերի և կենդանիների աճման հիմքում ընկած է բջիջների բազմացումը, նոր բջիջներն առաջանում են նախորդ բջիջների կիսման հետևանքով։ Յուրաքանչյուր բջիջ կազմված է ցիտոպլազմայից, կորիզից, թաղանթից։ Բջիջը միջավայրից կլանում է նյութեր և էներգիա, վերափոխում և օգտագործում է իր կենսագործունեության համար։ Բջջում պահպանվում, իրագործվում և դուստր բջիջներին է փոխանցվում գենետիկական ինֆորմացիան։ Կան օրգանիզմներ, որոնք կազմված են մեկ բջջից և ինքնուրույն են։ Բազմաբջիջ օրգանիզմներում բջիջներն ունեն իրենց հատուկ ֆունկցիան և առաջացնում են հյուսվածքներ։ Հյուսվածքներից կազմավորվում են օրգանները, որոնք սերտորեն կապված են միմյանց հետ և կարգավորում են հումորալ և նյարդային համակարգերի միջոցով։

Ներկայումս հաստատված է, որ բոլոր բջիջները միանման պահպանում են գենետիկական ինֆորմացիան, որն օգտագործում են սպիտակուցի սինթեզի համար, պահպանում ու փոխանցում են էներգիան, որը վերափոխում են աշխատանքի, կարգավորում են նյութափոխանակությունը, բջջային կազմության շնորհիվ օրգանիզմը դիսկրետ է և ամբողջական: Օրգանիզմի մասնատումը առանձին փոքր կառուցվածքային միավորների ստեղծում է հսկայական մակերես, որում ընթանում են նյութափոխանակության գործընթացները:

Կառլ Բերը հայտնաբերեց ձվաբջիջները և ձևակերպեց այն դրույթը, որ բոլոր բազմաբջիջ օրգանիզմներն իրենց զարգացումը սկսում են մեկ բջջից՝ զիգոտից։

Ուսումնասիրման մեթոդներ[խմբագրել]

Լուսային մանրադիտակ
  1. Սովորական լուսային մանրադիտակ
  2. Էլեկտրոնային մանրադիտակ
  3. Լյումինիսցենցիայի մանրադիտակ
  4. Ցիտոքիմիական մեթոդ
  5. Ռադիոավտոգրաֆիայի մեթոդ
  6. Ցիտոսպեկտրոֆոտոմետրիա
  7. Դիֆերենցիալ ցենտրիֆուգման մեթոդ
  8. Բջջային կուլտուրա
  9. Ռենտգենոստրուկտուր անալիզի մեթոդ
  10. Իմունոլոգիական մեթոդ

Ձևաբանություն[խմբագրել]

Բջիջները մանրադիտակային գոյացություններ են, ունեն մի քանի միկրոնից (բակտերիաներ) մինչև 10-50 մկմ և ավելի մեծություն: Ըստ ձևի՝ լինում են գնդաձև, իլիկաձև, ձվաձև, մտրակավոր և այլն: Բջիջների նուրբ կառուցվածքը, շարժումները, բաժանումը և այլն ուսումնասիրում են ժամանակակից մանրադիտակների (էլեկտրոնային, լյումինեսցենտային և այլն) օգնությամբ:

Բջջի կառուցվածք[խմբագրել]

Բջիջը կազմված է տարբեր բաղադրամասերից, որոնք կենսագործունեության ընթացքում կատարում են առանձնահատուկ ֆունկցիաներ՝ խիստ համաձայնեցված ռեժիմով: Յուրաքանչյուր բջիջ կազմված է բջջապլազմայից (պրոտոպլազմա) և կորիզից: Բջջապլազման կիսահեղուկ միջավայր է, որը բաղկացած է 2 հիմնական բաղադրամասերից՝ ցիտոպլազմայից և կարիոպլազմայից և պարունակում է բազմաթիվ օրգանոիդներ ու տարբեր ներառումներ: Ներառումները բջջի գործունեության արգասիքների կուտակումներ են՝ բշտիկների կամ հատիկների ձևով։ Վերջիններս հարուստ են ճարպերով, ածխաջրերով, սպիտակուցներով, աղերով, որոնց քանակը փոփոխվում է բջջի գործունեության ժամանակ։ Ցիտոպլազման հոմոգեն, թափանցիկ մածուցիկ հեղուկ է, որում տարբերում են՝ հիալոպլազմա, օրգանոիդներ և ներառուկներ[2] Ցիտոպլազման արտաքինից պատված է թաղանթով, որին անվանում են ցիտոպլազմային մեմբրան կամ պլազմոլեմ։ Բուսական բջջի պլազմոլեմն արտաքինից պատված է բջջապատով, որը հիմնականում կազմված է ցելյուլոզից և պեկտինից։ Կենդանական բջիջների պլազմոլեմն արտաքինից պատված է 10-20 նմ հաստություն ունեցող գլիկոկալիքսով, որի հիմնական բաղադրամասերն են գլիկոպրոտեինները և գլիկոլիպիդները։

Օրգանոիդներ[խմբագրել]

Կորիզը էլեկտրոնային մանրադիտակի տակ, մուգ մասը կորիզակն է։

Օրգանոիդները մասնագիտացված մշտական կազմավորումներ են, որոնք կատարում են որոշակի ֆունկցիա։ Տարբերում են՝ ընդհանուր նշանակության օրգանոիդներ և հատուկ նշանակության օրգանոիդներ։ Հատուկ նշանակության օրգանոիդները բնորոշ են միայն որոշակի բջիջներին, օրինակ՝ միոֆիբրիլները հանդիպում են մկանայից բջիջներում, նեյրոֆիբրիլները՝ նյարդային բջիջներում, թարթիչները՝ շնչառական ուղիների, միկրոթավիկները՝ աղիների էպիթելի բջիջներում և այլն։ Ընդհանուր նշանակության օրգանոիդները բաժանվում են 2 խմբի՝ մեմբրանային և ոչ մեմբրանային։ Մեմբրանային կազմություն ունեն էնդոպլազմային ցանցը, գոլջիի համալիրը, լիզոսոմները, միտոքոնդրիումները, պլաստիդները, միկրոմարմնիկները։ Ոչ մեմբրանային կազմություն ունեն ռիբոսոմները, բջջային կենտրոնը, միկրոխողովակները, միկրոֆիլամենտները։

Կենդանիների բջիջների օրգանոիդներից են կորիզը, միտոքոնդրիաները (Կազմված են ցուպիկներից, հատիկներից և շղթայիկներից, որտեղ սինթեզվում է էներգիայով հարուստ ԱԵՖ։ Միտոքոնդրիումներն էներգիայի աղբյուր են։), ներպլազմային ցանցը (ունի ցանցի կամ զամբյուղիկի ձև և մասնակցում է արտազատման պրոցեսին), Գոլջիի համալիրը, լիզոսոմները և այլն, իսկ բույսերինը՝ նաև պլաստիդները, որոնցից առավել կարևոր են քլորոպլաստները: Բջիջներն արտաքինից պատված են բջջապլազմային թաղանթով, որն ունի բարդ կազմություն և կատարում է տարբեր ֆունկցիաներ:

Կորիզը պարունակում է միկրոկառուցվածքներ, որոնք կրում են բջջի ժառանգական ինֆորմացիան։ Բջիջների մեծամասնությունը պարունակում է 1 կորիզ, բայց կան նաև երկ- և բազմակորիզավորներ: Կորիզը կազմված է 4 հիմնական բաղադրամասերից՝ կորիզաթաղանթից, կորիզանյութից կամ կարիոպլազմայից, կորիզակից և քրոմատինից։ Կորիզն արտաքինից սահմանազատված է թաղանթով, որի ծակոտիներով դեպի բջջապլազմա կարող են անցնել նույնիսկ խոշոր մոլեկուլները, օրինակ՝ ինֆորմացիոն ռիբոնուկլեինաթթուները, որոնք գենետիկական ինֆորմացիա են հաղորդում բջջային որոշակի սպիտակուցների սինթեզի մասին: Բջջի ֆիզիոլոգիական ակտիվության փոփոխության դեպքում ծակոտիները կարող են անհետանալ կամ նորից առաջանալ:

Բջիջը բարդ համակարգ է, որը կարող է ստեղծել և խիստ կարգավորված աշխատունակ վիճակում պահպանել իր կառուցվածքներն ու իրականացնել բազմաթիվ քիմիական փոխարկումներ, այդ թվում՝ սպիտակուցների, նուկլեինաթթուների, բազմաշաքարների և այլ միացությունների սինթեզը: Բնականոն կենսագործունեության համար բջջին անհրաժեշտ է արտաքին աղբյուրներից մշտապես ստացվող էներգիա: Այդպիսի աղբյուրներ են արեգակի էներգիան (օգտագործում են կանաչ բույսերի բջիջները), ազատ քիմիական էներգիան, ինչպես նաև սննդանյութերում պարունակվող օրգանական նյութերը: Բջիջների կողմից սինթեզվող որոշ նյութեր կամ վերջնանյութեր հեռացվում են բջիջներից (հյութազատություն, արտազատություն): Նշված փոխարկումների ամբողջությունն իրենից ներկայացնում է բջջի նյութափոխանակությունը:

Օրգանոիդ, հատկանիշ Կենդանական բջիջ Բուսական բջիջ
Պլազմային թաղանթ Ունի Ունի
Բջջապատ Չունի Ունի
Բջջակորիզ և կորիզաթաղանթ Ունի Ունի
Պլաստիդներ Չունի Ունի
Միտոքոնդրիում Ունի Ունի
Գոլջիի համակարգ Ունի Ունի
Ռիբոսոմներ Ունի Ունի
Բջջակենտրոն Ունի Մեծ մասը չունի
Սնման ձևը Հետերոտրոֆ Ավտոտրոֆ
ԱԵՖ-ի սինթեզը Միտոքոնդրիումներում Քլորոպլաստներում և միտոքոնդրիումներում
ԱԵՖ-ի քայքայումը Որտեղ անհրաժեշտ է էներգիայի ծախս Քլորոպլաստներում և որտեղ անհրաժեշտ է էներգիայի ծախս
Վակուոլ Կծկուն, մարսողական և արտաթորող Ունի
Պաշարանյութեր Պաշարվում է գլիկոգեն Պաշարվում է օսլա
Նյութափոխանակությունը և էներգետիկ փոխակերպումը Հատկանշական է Հատկանշական է
Կապը բջիջների միջև Մեմբրանների ներփքումներով Պլազմոդեսմաներով
Քիմիական բաղադրությունը Ընդհանուր կողմերով նման են Ընդհանուր կողմերով նման են

Տեսակներ[խմբագրել]

Բջիջները լինում են հետերոտրոֆ (տարասուն) և ավտոտրոֆ (ինքնասուն): Տարասունները (մարդու և կենդանիների) կառուցվածքային տարրերն ու էներգիան ստանում են դրսից՝ բուսական և կենդանական ծագման սննդի ձևով: Վերջինիս ածխաջրերը, ճարպերը, սպիտակուցները, լինելով ազատ քիմիական էներգիայի աղբյուր, միաժամանակ կառուցվածքային տարրերի՝ ամինաթթուների, ազոտային հիմքերի, ճարպաթթուների աղբյուր են, որոնք բջիջում չեն սինթեզվում: Ինքնասուն օրգանիզմների (կանաչ բույսերի) բջիջները ֆոտոսինթեզի համար օգտագործում են արեգակի էներգիան, իսկ ազոտը, ֆոսֆորը, ծծումբը և մյուս հանքային նյութերը՝ կենսաօրգանական միացությունների ամբողջ բազմազանության կենսասինթեզի համար: Օրգանական միացությունների օքսիդացման ընթացքում առաջանում են ոչ միայն ներբջջային հետագա սինթեզի համար անհրաժեշտ պարզ նյութեր, այլև ադենոզինեռֆոսֆորաթթվի, կրեատինֆոսֆատի, գուանոզինեռֆոսֆորաթթվի և այլ միացությունների մոլեկուլներ, որոնք ազատ քիմիական էներգիայի կուտակիչներ են բջիջում ընթացող բոլոր գործընթացների (նոր քիմիական միացությունների սինթեզ, մեխանիկական, էլեկտրաքիմիական գործունեություն) համար:

Բջիջները լինում են նաև պրոկարիոտ և էուկարիոտ։ Էուկարիոտ բջիջներն իրենց հերթին լինում են կենդանական և բուսական բջիջներ[3]

Բջիջները հիմնականում ունեն մանրադիտակային չափեր՝ 10 մկմ-100մ կմ սահմաններում։ Ըստ չափերի՝ տարբերում են բջիջների 2 տեսակ՝ պարենքիմային և պրոզենքիմային բջիջներ։

Քիմիական կազմ[խմբագրել]

Կենդանի օրգանիզմների բջիջներում հայտնաբերված են մոտ 90 քիմիական տարրեր։ Այդ տարրերը բաժանվում են 3 խմբի՝

  1. մակրոտարրեր, որոնց բաղադրությունը կազմում է մինչև 98% (ածխածին, ջրածին, ազոտ, թթվածին), (>1,5-2 %՝ (կալիում, նատրիում, կալցիում, մագնեզիում, ծծումբ, ֆոսֆոր, քլոր, երկաթ)
  2. միկրոտարրեր (>0,01 %), (ցինկ, պղինձ, ֆտոր, յոդ, կոբալտ, մոլիբդեն և այլն)
  3. ուլտրամիկրոտարրեր (>0,00001 %), (ուրան, ռադիում, ոսկի, ցեզիում)

Բազմացում[խմբագրել]

Բջջի կիսում

Բջիջների բազմացումն ընթանում է 2 եղանակով՝ ուղղակի (պարզ) ամիտոզ (Հայտնաբերված է կենդանի օրգանիզմի բոլոր հյուսվածքներում։ Բաժանմանը նախորդում է կորիզակների կիսումը, հետո կորիզը ձգվելով՝ կիսվում է երկու մասի։ Կորիզի կիսվելուց հետո տեղի է ունենում ցիտոպլազմայի կիսումը, և առաջանում են 2 դուստր բջիջներ։) և անուղղակի (բարդ) միտոզե կարիոկինեզ։ Բջիջները բաժանվում են կիսվելով։ Եթե բջիջը զրկվում է կորիզից, այն կորցնում է բազմանալու հատկությունը։ Անուղղակի բաժանումն ընթանում է 4 փուլով՝ նախափուլ (պրոֆազ), փոփոխափուլ (մետաֆազ), միջնափուլ (անաֆազ), վերջնափուլ (տելոֆազ)։ Պրոֆազը հատկանշական է քրոմոսոմների ձևավորմամբ, որոնք կորիզում կծիկ են առաջացնում։ Բջջային կենտրոնն իր չափերով մեծանում է և տեղավորվում կորիզի մոտ։ Ցենտրիոլները հեռանում են իրարից, և կորիզն անհետանում է։ Մետաֆազում տեղի է ունենում քրոմոսոմների երկատում և կորիզաթաղանթի անհետացում, բջջային կենտրոնը դառնում է իլիկաձև։ Մետաֆազն ավարտվում է նրանով, որ յուրաքանչյուր քրոմոսոմի վրա երկայնակի ճեղք է առաջանում։ Մետաֆազն ամենաերկար տևողությունն ունի. այն միտոզի ժամանակի 1/3 մասն է կազմում։ Անաֆազն ամենակարճ տևողությունն ունի։ Քրոմոսոմներն իրարից բաժանվում են և հեռանում բջջի հակառակ բևեռները՝ կազմելով 2 միատեսակ համալիր։ Տելոֆազում տեղի է ունենում բջջի բաժանում երկու դուստր բջիջների։

Բջիջներն ընդունակ են ինքնավերարտադրման, որի հիմքում ընկած է ԴՆԹ-ի ինքնապատճենավորման ունակությունը և միտոզի ընթացքում քրոմոսոմների խիստ հավասարարժեք բաժանումը: Քրոմոսոմների ինքնավերարտադրման, կիսման, բջջապլազմայի բաժանման և 2 կորիզների առաջացման ընթացքները կազմում են բջջի միտոզի շրջանը: Ժառանգական նյութը հավասար բաժանվում է դուստր բջիջների միջև: Բաժանումից հետո բջիջները տարբերակվում են և կատարում համապատասխան ֆունկցիա:

Բազմաբջիջ օրգանիզմում կան բազմաթիվ բջիջներ, որոնք միմյանցից տարբերվում են կառուցվածքով և կենսագործունեությամբ: Միևնույն ծագման մասնագիտացված բջիջներն առաջացնում են հյուսվածքներ: ժամանակակից դասակարգմամբ բջիջները բաժանում են ըստ հյուսվածքի տեսակի՝ էպիթելային, շարակցական, մկանային և նյարդային: ԲջիջՆերը, պահպանելով յուրաքանչյուր հյուսվածքի բնորոշ գծերը, կարող Են տարբերվել թե՛ արտաքին տեսքով, թե’ ֆունկցիայով, և տարբերությունների բնույթը փոփոխվում է օրգանիզմի անհատական զարգացման ընթացքում: Ֆունկցիոնալ առանձնահատկությունների ձեռքբերման կարևոր գործոն է նաև բջջի փոխներգործությունը (նյարդային կամ հումորալ կապով) այլ հյուսվածքների բջիջների կամ հեռավոր բջջային համակարգերի հետ: Յուրաքանչյուր հյուսվածքում կան բջիջներ, որոնք պահպանում են բաժանման ունակությունը: Դրանց սերնդի մի մասը բաժանումից հետո տարբերակվում է և փոխարինում տվյալ հյուսվածքի մահացած բջիջներին, իսկ մյուս մասը չի տարբերակվում և ընդունակ է հետագա բաժանման: Բջիջների բնականոն գործունեության խանգարումները (ախտաբանությունը) կապված են բազմաթիվ գործոնների (ֆիզիկական, քիմիական, կենսաբանական) հետ և բնութագրվում են բջիջների օրգանոիդների կազմավորման ընդհանուր կամ տեղային խանգարումներով, նյութափոխանակության առանձին փոփոխություններով:

Բջջի կիսում

Բջիջների համար անբարենպաստ գործոններ են լուսային և իոնացնող ճառագայթները, ցածր և բարձր ջերմաստիճանները, ակտիվ քիմիական միացությունները, վիրուսային, բակտերիային, սնկիկային վարակները, սննդի մեջ այն նյութերի անբավարարությունը, որոնք բջջին ապահովում են քիմիական էներգիայով կամ առանձնահատուկ կառուցվածքային միացություններով (անփոխարինելի ամինաթթուներ, ճարպաթթուներ, վիտամիններ, միկրոտարրեր), թթվածնի անբավարարությունը և այլն: Անբարենպաստ կարող են լինել և ներքին գործոնները, օրինակ՝ ժառանգական նյութի մուտացիաները, որոնք հանգեցնում են սպիտակուցների (մասնավորապես՝ ֆերմենտների), լիպիդների սինթեզի բնածին արատների:

Բջիջների ախտաբանության տարածված պատճառ է դրանց մեջ վիրուսների թափանցումը և բազմացումը: Ընդ որում փոխանակության գործընթացները խանգարվում են, որովհետև ախտածին վիրուսը բջջին ստիպում է աշխատել միայն իր համար: Նորակազմ վիրուսային մասնիկների զանգվածային առաջացումից հետո բջիջը ոչնչանում է: Որոշ ախտածին վիրուսներ առաջացնում են բջիջների կազմափոխություն: Վիրուսների ազդեցության արդյունք կարող է լինել մի քանի բջիջների միաձուլումը, որի հետևանքով գոյանում են բազմակորիզ հսկա բջիջներ՝ փոխանակային գործընթացների խանգարումով, որը հանգեցնում է դրանց արագ ոչնչացման:

Տարբերում են բջջի մահացման 3 ձև՝ պիկնոզ (կորիզը փոքրանում է և խտանում, հատիկավորվում), կարիոռեկսիա (կորիզի պարունակությունը քայքայվում է, վեր է ածվում հատիկների), կարիոլիզիս (կորիզը լուծվում և անհետանում է)։

Տես նաև[խմբագրել]

Ծանոթագրություններ[խմբագրել]

  1. Ընդհանուր Կենսաբանություն, Նադեժդա Բեգլարյան, էջ 93-97
  2. Կենսաբանություն, Սիսակյան, էջ 18-19
  3. Կենսաբանություն, Տիգրան Թանգամյան, էջ 19, 53-54

Աղբյուրներ[խմբագրել]

  • Տիգրան Թանգամյան «Կենսաբանություն», էջ 19, 53-54
  • Սիսակյան «Կենսաբանություն», էջ 18-19
  • Նադեժդա Բեգլարյան «Ընդհանուր Կենսաբանություն», էջ 93-97
  • Հայկական Հանրագիտարան «Հանրամատչելի բժշկական հանրագիտարան», էջ 135, 2001թ, Երևան