Ձգողականություն

Վիքիպեդիայից՝ ազատ հանրագիտարանից

Ձգողականություն (միջազգային տերմինը՝ գրավիտացիա, լատիներեն gravitas՝ «ծանրություն» բառից), ունիվերսալ հիմնարար փոխազդեցությունը բոլոր նյութական մարմինների միջև։ Փոքր արագությունների և թույլ ձգողական փոխազդեցության դեպքում նկարագրվում է Նյուտոնի ձգողականության օրենքով, ընդհանուր դեպքում՝ Այնշտայնի հարաբերականության ընդհանուր տեսությամբ: Չորս հիմնական փոխազդեցություններից ամենաթույլն է։ Քվանտային սահմանում ձգողականությունը պետք է նկարագրվի ձգողականության քվանտային տեսությամբ, որը դեռ ամբողջովին մշակված չէ։

Ձգողական փոխազդեցությունը[խմբագրել]

Տիեզերական ձգողականության օրենքը

Դասական մեխանիկայի շրջանակներում ձգողական փոխազդեցությունը նկարագրվում է Նյուտոնի տիեզերական ձգողականության օրենքով, ըստ որի՝ m_1 և m_2 զանգվածներով նյութական կետերի գրավիտացիոն ձգողականության ուժը ուղիղ համեմատական է զանգվածներին և հակադարձ համեմատական է այդ կետերի միջև r հեռավորության քառակուսուն, այսինքն՝

F=G\frac{m_1m_2}{r^2}:

Այստեղ Gգրավիտացիոն հաստատունն է, G = 6,6725×10-11 Ն·մ2/կգ2։

Գրավիտացիոն դաշտը պոտենցիալ վեկտորական դաշտ է։ Դա նշանակում է, որ կարելի է մտցնել մարմինների զույգի գրավիտացիոն ձգողականության պոտենցիալ էներգիա, որը չի փոփոխվի մարմինները փակ կոնտուրով տեղափոխելուց հետո։ Գրավիտացիոն դաշտի պոտենցիալ լինելուց բխում է կինետիկ և պոտենցիալ էներգիաների գումարի պահպանման օրենքը, ինչպես նաև հաճախ է հեշտանում մարմինների շարժման ուսումնասիրման խնդիրը գրավիտացիոն դաշտում։

Նյուտոնյան մեխանիկայի շրջանակներում գրավիտացիոն փոխազդեցությունը հեռազդեցություն է։ Դա նշանակում է, որ որքան էլ մեծ լինի շարժվող մարմնի զանգվածը, տարածության ցանկացած կետում գրավիտացիոն պոտենցիալը կախված է միայն ժամանակի տվյալ պահին մարմնի ունեցած դիրքից։

Մեծ տիեզերական մարմինները՝ մոլորակները, աստղերը, գալակտիկաները ունեն հսկայական զանգված և հետևաբար ստեղծում են ուժեղ գրավիտացիոն դաշտեր։

Գրավիտացիան ամենաթույլ փոխազդեցությունն է։ Սակայն, քանի որ գործում է ցանկացած հեռավորության վրա և ցանկացած զանգված դրական է, այն շատ կարևոր ուժ է ամբողջ Տիեզերքում։ Համեմատության համար կարէլի է նշել, որ մարմինների էլեկտրամագնիսական փոխազդեցությունը տիեզերական մասշտաբներում փոքր է, քանի որ այդ մարմինների լրիվ էլեկտրական լիցքը զրո է (նյութը որպես ամբողջություն էլեկտրաչեզոք է)։

Ի տարբերություն մյուս փոխազդեցությունների, գրավիտացիան տարածվում է ողջ նյութի և էներգիայի վրա։ Մինչ օրս չեն հայտնաբերվել այնպիսի օբյեկտներ, որոնք ընդհանրապես չեն մասնակցում գրավիտացիոն փոխազդեցությանը։

Իր գլոբալ բնույթի հետևանքով գրավիտացիան պատասխանատու է նաև այնպիսի խոշորամասշտաբ երևույթների համար, ինչպիսիք են գալակտիկաների կառուցվածքը, սև խոռոչները և Տիեզերքի ընդարձակումը։ Տարրական աստղագիտական երևույթները՝ մոլորակների ուղեծրերը, Երկրի մակերևույթի պարզ ձգողականությունը, մարմինների անկումը նույնպես պայմանավորված են գրավիտացիայով։

Պատմությունը[խմբագրել]

Գրավիտացիան մաթեմատիկական տեսությամբ նկարագրված առաջին փոխազդեցությունն է։ Արիստոտելը համարում էր, որ տարբեր զանգվածներով մարմիններն ընկնում են տարբեր արագությամբ։ Շատ ուշ Գալիլեյը փորձնականորեն որոշեց, որ իրականում այդպես չէ, եթե անտեսենք օդի դիմադրությունը, բոլոր մարմինների արագացումը նույնն է։ Նյուտոնի տիեզերական ձգողականության օրենքը (1687թ.) լավ նկարագրում էր գրավիտացիայի հիմնական վարքը։ 1915թ. Ալբերտ Այնշտայնը ստեղծեց հարաբերականության ընդհանուր տեսությունը, որն ավելի ճշգրիտ է նկարագրում գրավիտացիան տարածություն-ժամանակ երկրաչափության տերմիններով։

Երկնային մեխանիկան և նրա որոշ խնդիրներ[խմբագրել]

Մեխանիկայի այն բաժինը, որն ուսումնասիրում է մարմինների շարժումը դատարկ տարածության մեջ միայն գրավիտացիայի ազդեցությամբ, կոչվում է երկնային մեխանիկա: Երկնային մեխանիկայի ամենապարզ խնդիրներից մեկը երկու կետային կամ գնդային մարմինների գրավիտացիոն փոխազդեցությունն է դատարկ տարածության մեջ։ Այս խնդիրը դասական մեխանիկայի շրջանակներում լուծվում է անալիտիկ ձևով։ Հաճախ այն ձևակերպում են Կեպլերի երեք օրենքների տեսքով։

Խնդիրը խիստ բարդանում է փոխազդող մարմինների քանակի մեծացման դեպքում։ Օրինակ, հայտնի երեք մարմինների խնդիրը, այսինքն՝ ոչ զրոյական զանգվածներով երեք մարմինների շարժման խնդիրը ընդհանուր դեպքում չի կարող անալիտիկ լուծում ունենալ։ Քանակական լուծման դեպքում լուծումն անկայուն է սկզբնական պայմանների նկատմամբ։ Արեգակնային համակարգի հանդեպ կիրառելիս այդ անկայունությունը թույլ չի տալիս կանխատեսել մոլորակների ճշգրիտ շարժումը հարյուր միլիոնավոր տարիները գերազանցող մասշաբներում։

Որոշ մասնակի դեպքերում հաջողվում է մոտավոր լուծում գտնել։ Առավել կարևոր է այն դեպքը, երբ մի մարմնի զանգվածն էապես մեծ է մյուս մարմինների զանգվածներից (օրինակ, Արեգակնային համակարգը և Սատուրնի օղակների դինամիկան)։ Այս դեպքում առաջին մոտավորությամբ կարելի է համարել, որ թեթև մարմինները միմյանց հետ չեն փոխազդում և կեպլերյան հետագծերով շարժվում են զանգվածեղ մարմնի շուրջը։ Նրանց միջև փոխազդեցությունը կարելի է հաշվարկել խոտորումների տեսության շրջանակներում և միջինացնել ըստ ժամանակի։ Ընդ որում կարող են ի հայտ գալ ոչ տրիվիալ երևույթներ, ինչպես օրինակ ռեզոնանսներ, քաոսայնություն և այլն։ Այդպիսի երևույթի վառ օրինակ է Սատուրնի օղակների բարդ կառուցվածը։

Ուժեղ գրավիտացիոն դաշտեր[խմբագրել]

Ուժեղ գրավիտացիոն դաշտում, ինչպես նաև ռելյատիվիստական արագություններով գրավիտացիոն դաշտում շարժվելու ժամանակ սկսում են ի հայտ գալ հարաբերականության ընդհանուր տեսության երևույթները.

  • տարածություն-ժամանակի երկրաչափության փոփոխություն,
    • հետևանք. ձգողության օրենքի շեղում նյուտոնյանից,
    • էքստրեմալ դեպքերում սև խոռոչի առաջացում,
  • պոտենցիալների հապաղում, ինչը կապված է գրավիտացիոն խոտորումների տատանման վերջավոր արագության հետ,
  • ոչ գծայնության էֆեկտ. գրավիտացիան ունի ինքն իր հետ փոխազդելու հատկություն, այդ պատճառով ուժեղ դաշտերում վերադրման սկզբունքն արդեն տեղի չի ունենում։

Գրավիտացիոն ճառագայթում[խմբագրել]

Հարաբերականության ընդհանուր տեսության ամենակարևոր կանխատեսումներից մեկը գրավիտացիոն ճառագայթումն է, ինչը մինչ այժմ ուղղակի դիտումներով չի հաստատվել, սակայն կան անուղղակի ապացույցներ դրա գոյության օգտին։ Այսպես, էներգիայի կորուստները կոմպակտ գրավիտացիոն օբյեկտներից (ինչպիսիք են նեյտրոնային աստղերը կամ սև խոռոչները) կազմված կրկնակի համակարգերում լավ համաձայնեցվում են հարաբերականության ընդհանուր տեսության մոդելի հետ, ըստ որի՝ այդ էներգիան տարվում է գրավիտացիոն ճառագայթմանմիջոցով։