«Ձգողականություն»–ի խմբագրումների տարբերություն

Jump to navigation Jump to search
=== Ձգողականության ռելյատիվիստական տեսություն ===
 
Գրավիտացիոն դաշտի առկայությամբ «կորացած» (ոչ Էվկլիդեսյան) է ոչ միայն տարածությունը, այլև ժամանակը։ Դա նշանակում է, որ ժամանակի (ժամացույցների) ընթացքը կետից կետ փոփոխվում է՝ մի համընդհանուր ժամանակ այլևս գոյություն չունի։ Այսպիսով, տիեզերական ձգողության տեսությունում (հարաբերականության ընդհանուր տեսությունում) դեկարտյան ուղղագիծ կոորդինատների գծեր լինել չեն կարող, կոորդինատների համակարգը միայն կորագիծ է։ Ավելին, այստեղ կոորդինատների ընտրությունը կամայական է՝ հաշվարկման և կոորդինատների բոլոր համակարգերը համարժեք են, արտոնյալ համակարգեր չկան։ Սա նշանակում է, որ բնության օրինաչափությունները ձևակերպող [[Դիֆերենցիալ հավասարումներ|դիֆերենցիալ հավասարումները]] կոորդինատների բոլոր համակարգերում պետք է ունենան միևնույն տեսքը (հարաբերականության ընդհանուր սկզբունք կամ կովարիանտության սկզբունք)։ Այս պահանջներին բավարարելու համար ֆիզիկական մեծությունները պետք է լինեն սկալյարներ, [[Վեկտոր|վեկտորներ]] և թենզորներ, հավասարումները՝ թենզորական, իսկ մաթեմատիկական ապարատը՝ Ռիմանի երկրաչափություն և դրան համապատասխան թենզորական հաշիվ։ Մեծությունների թենզորական բնույթը պահպանելու համար մտցվում է կովարիանտ դիֆերենցիալի հասկացությունը։ Այսպես, ս<supmath>1u^l</supmath> վեկտորի δu <sup>1</sup>/δu<supmath>\frac {\partial {u^l}} {\partial {x^k}}</supmath> ածանցյալը Ռիմանի տարածությունում թենզոր չէ, այդպիսին է միայն
<math>\frac {D{u^l}} {\partial {x^k}} \equiv \frac {\partial {u^l}} {\partial {x^k}} + {{\Gamma}_{kl}^l}u^k</math>
Du<sup>1</sup>/δx<sup>k</sup>=δu<sup>1</sup>/δu<sup>k</sup>+Г<sup>1</sup><sub>k1</sub>u<sup>k</sup>,
 
որտեղ Г<supmath>1</sup><sub>k1{{\Gamma}_{kl}^l}u^k</submath> գործակիցները կոչվում են Քրիստոֆելի սիմվոլներ և որոշվում g<submath>ikg_{il}</submath> թենզորի ու դրա առաջին կարգի ածանցյալներով՝ ըստ կոորդինատների։ Հարթ տարածությունում, երբ կոորդինատների համակարգն ուղղագիծ է, Г<sub>k1</submath>\Gamma_{il} = Կարելի է ասել, որ էյնշտեյնի տեսությունում [[գրավիտացիոն դաշտ|գրավիտացիոն դաշտը]] համապատասխան կորացումով փոխարինվում է ռիմանյան տարածությամբ։ Այլ դաշտերի բացակայության դեպքում այդ տարածությունում մասնիկները շարժվում են «ազատ», որոշակի գծերով, որոնք ամենակարճն են և կոչվում են գեոդեզիական գծեր։ Դրանք նկարագրվում են d<sup>2</sup>x<sup>i</sup>/dS<sup>2</sup>+Г<sup>1</sup><sub>k1</sub>dx<sup>k</sup>/dSΧdx<sup>1</sup>/dS=0 հավասարումով։ Ըստ նյուտոնյան տեսության, ,mГ<sup>i</supmath><sub>kl</sub>u<sup>k</sup>u<sup>l</sup>ը մասնիկի վրա ազդող ձգողության ուժն է (u<sup>k</sup>=dx<sup>i</sup>/dS քառաչափ արագությունն է)։ Էյնշտեյնի-Հիլբերտի տեսությունում գրավիտացիոն դաշտը որոշվում է R<sub>ik</sub> -(R/2)g<sub>ik</sub>=(8πG/c<sub>4</sub>)T<sub>ik</sub> հավասարումներով։ R=g<sup>ik</sup>R<sub>ik</sub>, որտեղ g<sup>ik</sup> մետրիկական թենզորի
 
Կարելի է ասել, որ էյնշտեյնի տեսությունում [[գրավիտացիոն դաշտ|գրավիտացիոն դաշտը]] համապատասխան կորացումով փոխարինվում է ռիմանյան տարածությամբ։ Այլ դաշտերի բացակայության դեպքում այդ տարածությունում մասնիկները շարժվում են «ազատ», որոշակի գծերով, որոնք ամենակարճն են և կոչվում են գեոդեզիական գծեր։ Դրանք նկարագրվում են d<sup>2</sup>x<sup>i</sup>/dS<sup>2</sup>+Г<sup>1</sup><sub>k1</sub>dx<sup>k</sup>/dSΧdx<sup>1</sup>/dS=0 հավասարումով։ Ըստ նյուտոնյան տեսության, ,mГ<sup>i</sup><sub>kl</sub>u<sup>k</sup>u<sup>l</sup>ը մասնիկի վրա ազդող ձգողության ուժն է (u<sup>k</sup>=dx<sup>i</sup>/dS քառաչափ արագությունն է)։ Էյնշտեյնի-Հիլբերտի տեսությունում գրավիտացիոն դաշտը որոշվում է R<sub>ik</sub> -(R/2)g<sub>ik</sub>=(8πG/c<sub>4</sub>)T<sub>ik</sub> հավասարումներով։ R=g<sup>ik</sup>R<sub>ik</sub>, որտեղ g<sup>ik</sup> մետրիկական թենզորի
[[Պատկեր:GodfreyKneller-IsaacNewton-1689.jpg|225px|մինի|ձախից|Իսահակ Նյուտոն՝ Տիեզերական ձգողության մասին օրենքների հիմնադիրներից մեկը]]
կոնտրավարիանտ բաղադրիչներն են, որոշվում են g<sup>in</sup> g<sub>kn</sub>=δ<sup>1</sup><sub>k</sub> առնչությամբ (δ<sup>1</sup><sub>k</sub>=1, երբ i=k և 0, երբ i≠k), R<sub>ik</sub>-ն Ռիչիի թենզորն է՝ արտահայտվում է g<sub>ik</sub> թենզորով և դրա բաղադրիչների առաջին և երկրորդ կարգի ածանցյալներով, վերջապես T<sub>ik</sub>-ն էներգիայի-իմպուլսի թենզորն է, որը որոշվում է նյութի էներգիայի խտությամբ, ճնշումով և արագությամբ։ Վերջին հավասարումը ոչ գծային է։ Դաշտը և զանգվածների բաշխումն այստեղ որոշվում են միաժամանակ, երբ տրված են սկզբնական և եզրային պայմանները։ Զանգվածներով զբաղեցված տարածամասի համար լուծումները գտնում են թվային ինտեգրումով (բացառությամբ անսեղմելի հեղուկի մոդելի՝ այն էլ ստատիկ դեպքում)։ Արտաքին ընդհանուր լուծում գտնված է միայն կենտրոնահամաչափ դաշտի համար (Շվարցշիլդի լուծում), իսկ որոշ մասնակի լուծումներ՝ առանցքային համաչափության դաշտերի համար։ Էյնշտեյնի հավասարումներն ունեն այն կարևոր առանձնահատկությունը, որ պարունակում են նաև զանգվածների շարժման հավասարումները, սակայն նյութի վիճակի հավասարումը (ճնշման և խտության կապը) չեն պարունակում, այսինքն՝ ընդգրկում են մեխանիկան, իսկ թերմոդինամիկան՝ ոչ։ Էյնշտեյնի տիեզերական ձգողության տեսությունը համաձայնեցված է նյուտոնյան տեսության հետ։ Բավականաչափ թույլ դաշտերի դեպքում վերջինից ստացվում է m<sub>ի</sub>a=F = Gm<sub>ծ</sub>Mr/r<sup>3</sup>։ m<sub>ի</sub>=m<sub>ծ</sub> բանաձևը, ընդ որում մետրիկական թենզորի g<sub>∞</sub> բաղադրիչը գրավիտացիոն պոտենցիալի հետ կապված է g<sub>∞</sub>=l+2φ/с<sup>2</sup> առնչությամբ (|φ|<с<sup>2</sup>)։ Թույլ դաշտերի դեպքում Տիեզերական ձգողության ռելյատիվիստական տեսությունից հետևում են մի շարք էֆեկտներ (լույսի կարմիր շեղում, [[Ճառագայթում|ճառագայթի]] թեքում, մոլորակների [[Ուղեծիր|ուղեծրերի]] լրացուցիչ դարավոր պտույտ ևն), որոնք հաստատված են դիտողական փաստերով։ Ուժեղ դաշտերի էֆեկտները (երկնային մարմինների կոլապս, [[Սև խոռոչներ|սև խոռոչներ]]) այդպիսի հաստատում դեռևս չունեն։ Որոշակի հիմքեր կան ենթադրելու, որ էյնշտեյնի տիեզերական ձգողության տեսությունը շատ ուժեղ դաշտերի դեպքում ճշգրտումների կարիք է զգում։ Պետք է նշել նաև, որ նյութի տարածական բաշխման մասին կատարելով որոշակի ենթադրություններ (համասեռություն և իզոտրոպություն), վերջին հավասարման լուծումից ստացվում է տիեզերքի ընդարձակման երևույթը ([[Հաբլի օրենք|Հաբլի էֆեկտ]])։
8988

edits

Նավարկման ցանկ