«Ձգողականություն»–ի խմբագրումների տարբերություն

Jump to navigation Jump to search
== Համարժեքության սկզբունքը ==
 
[[Նյուտոնի դասական ձգողության տեսություն|Նյուտոնի տիեզերական ձգողության տեսությունն]] անտեսում է միջավայրի դերը և դրանով հակասում պատճառականության օրենքին։ Այն հեռազդեցության տեսություն է․ մարմիններն իրար վրա ազդում են ակընթարթորեն՝ հեռավորության վրա։ Սա հակասում է հարաբերականության սկըզբունքին, որի համաձայն բոլոր տեսակի փոխազդեցությունները պետք է տարածվեն միևնույն с արագությամբ, ինչպես դա տեղի ունի էլեկտրամագնիսական երևույթներում։ Երկարատև որոնումներից հետո նշված թերություններից զերծ տեսություն ձևակերպել են Ա․ Էյնշտեյնը և դարեր Հիլբերտը՝ [[1916]] թվականին։ Տիեզերական ձգողության նոր տեսության ստեղծումը պայմանավորված է եղել մի շարք կարևոր նախադրյալներով, չհաշված իհարկե Նյուտոնի տիեզերական ձգողության տեսությունը, որը հիմնականն է։ Առաջինը փոփոխական չափականություն ունեցող տարածության (ոչ [[Էվկլիդես|Էվկլիդեսյան]]) երկրաչափության ստեղծումն էր (Բ․ Ռիման, [[1854]] թվական), երկրորդը՝ հարաբերականության հատուկ տեսությունը (Ա․ էյնշտեյն, [[1905]] թվական) և, վերջապես, իրական աշխարհի (մատերիա, [[Տարածություն և ժամանակ|տարածություն, ժամանակ]]) ու ֆիզիական․ֆիզիկական․ մեծությունների քառաչափ բնույթի հայտնագործումը (Հ․ Մինկովսկի, [[1906]] թվական), տարածության ու ժամանակի միասնության փաստի բացահայտումը։ Տիեզերական ձգողության նոր տեսությունն [[Էյնշտեյն Ալբերտ|էյնշտեյնն]] անվանեց հարաբերականության ընդհանուր տեսություն, որը համընդհանուր ընդունելություն գտավ։ Սակայն այդ անվանումն ունի որոշակի թերություններ՝ լիովին չի համապատասխանում տեսության բովանդակությանը, մի բան, որն արդարացիորեն քննադատել է հատկապես Վ․ Ա․ Ֆոկը։ Տիեզերական ձգողության տեսության հիմքում ընկած է էյնշտեյնի համարժեքության սկզբունքը։ Համաձայն այդ սկզբունքի, գրավիտացիոն դաշտում –g արագացումով շարժվող հաշվարկման համակարգերում բնության օրինաչափություններն ընկալվում են միատեսակ (համարժեքության ուժեղ սկըզբունք)․ այդ իմաստով գրավիտացիոն դաշտը և համապատասխան արագացումով շարժվող համակարգը համարժեք են։ (Համարժեքության թույլ սկզբունքը վերաբերում է միայն մարմինների մեխանիկական շարժմանը։) Կարելի է ձևակերպել և այսպես, ազատ ընկնող հաշվարկման համակարգում գրավիտացիոն դաշտն անհետանում է։ Այս սկզբունքը հիմնված է մարմնի իներտ (m<sub>ի</sub>) և ծանր (m<sub>ծ</sub>) զանգվածների հավասարության փաստի վրա (Լ․ էտվեշի փորձը)։ Իներտ զանգվածը մտնում է [[Նյուտոնի երկրորդ օրենք|Նյուտոնի երկրորդ օրենքի]], իսկ ծանր զանգվածը՝ տիեզերական ձգողության օրենքի բանաձևում․
[[Պատկեր:Galileo Galilei.jpeg|250px|մինի|ձախից|Կարևոր հայտնագործությունները կատարած՝ Գալիլեո Գալիլեյը]]
m<sub>ի</sub>a=F = Gm<sub>ծ</sub>Mr/r<sup>3</sup>։ m<sub>ի</sub>=m<sub>ծ</sub>
a=GMr/r<sup>3</sup>
 
արագացումով։ Ճիշտ նույն օրենքով կշարժվի մասնիկը, եթե նրա շարժումը դիտվի արագացումով շարժվող համակարգում, երբ գրավիտացիոն դաշտ չկա։ Այսպիսով, համարժեքության սկզբունքը կարելի է ձևակերպել որպես իներտ և ծանր գանգվածների հավասարության պահանջ։ Համարժեքության սկզբունքի հայտնագործումն իրավացիորեն վերագրվում է Գալիլեյին։ էյնշտեյնի արժանիքն այն է, որ նա հիշատակված փաստերը հասցրեց սկզբունքի մակարդակի և այնուհետև ընդհանրացրեց իրական դաշտերի համար, որոնք համասեռ և հաստատուն չեն (համարժեքության լոկալ սկզբունք)։ Հաշվարկման համակարգի համապատասխան ընտրությամբ տարածության-ժամանակի բավականաչափ Փոքր տիրույթում գրավիտացիոն դաշտը կարելի է վերացնել։ Քանի որ իրական գրավիտացիոն դաշտը համասեռ չէ՝ ձգող մարմնից հեռանալիս նվազում է և անվերջությունում դառնում զրո, ապա այն համարժեք է տարբեր արագացումներով շարժվող անվերջ թվով հաշվարկման համակարգերի։ Համարժեքություն մի ընդհանուր համակարգի հետ գոյություն չունի։ Մինկովսկու աշխարհը (տարածությունը) նկարագրվում է Էվկլիդեսյան չափականությամբ։ Պատկերավոր ասած, այն «հարթ» է։ Հարևան երկու կետերի (պատահույթների) հեռավորությունն այստեղ որոշվում է
 
=== Մինկովսկու տարածություն ===
 
Մինկովսկու աշխարհը (տարածությունը) նկարագրվում է Էվկլիդեսյան չափականությամբ։ Պատկերավոր ասած, այն «հարթ» է։ Հարևան երկու կետերի (պատահույթների) հեռավորությունն այստեղ որոշվում է
 
dS<sup>2</sup>=(dx,<sup>0</sup>)<sup>2</sup>–(dx<sup>1</sup>)<sup>2</sup>—(dx<sup>2</sup>)<sup>2</sup>–(dx<sup>3</sup>)<sup>2</sup>
[[Պատկեր:GodfreyKneller-IsaacNewton-1689.jpg|225px|մինի|ձախից|Իսահակ Նյուտոն՝ Տիեզերական ձգողության մասին օրենքների հիմնադիրներից մեկը]]
կոնտրավարիանտ բաղադրիչներն են, որոշվում են g<sup>in</sup> g<sub>kn</sub>=δ<sup>1</sup><sub>k</sub> առնչությամբ (δ<sup>1</sup><sub>k</sub>=1, երբ i=k և 0, երբ i≠k), R<sub>ik</sub>-ն Ռիչիի թենզորն է՝ արտահայտվում է g<sub>ik</sub> թենզորով և դրա բաղադրիչների առաջին և երկրորդ կարգի ածանցյալներով, վերջապես T<sub>ik</sub>-ն էներգիայի-իմպուլսի թենզորն է, որը որոշվում է նյութի էներգիայի խտությամբ, ճնշումով և արագությամբ։ Վերջին հավասարումը ոչ գծային է։ Դաշտը և զանգվածների բաշխումն այստեղ որոշվում են միաժամանակ, երբ տրված են սկզբնական և եզրային պայմանները։ Զանգվածներով զբաղեցված տարածամասի համար լուծումները գտնում են թվային ինտեգրումով (բացառությամբ անսեղմելի հեղուկի մոդելի՝ այն էլ ստատիկ դեպքում)։ Արտաքին ընդհանուր լուծում գտնված է միայն կենտրոնահամաչափ դաշտի համար (Շվարցշիլդի լուծում), իսկ որոշ մասնակի լուծումներ՝ առանցքային համաչափության դաշտերի համար։ Էյնշտեյնի հավասարումներն ունեն այն կարևոր առանձնահատկությունը, որ պարունակում են նաև զանգվածների շարժման հավասարումները, սակայն նյութի վիճակի հավասարումը (ճնշման և խտության կապը) չեն պարունակում, այսինքն՝ ընդգրկում են մեխանիկան, իսկ թերմոդինամիկան՝ ոչ։ Էյնշտեյնի տիեզերական ձգողության տեսությունը համաձայնեցված է նյուտոնյան տեսության հետ։ Բավականաչափ թույլ դաշտերի դեպքում վերջինից ստացվում է m<sub>ի</sub>a=F = Gm<sub>ծ</sub>Mr/r<sup>3</sup>։ m<sub>ի</sub>=m<sub>ծ</sub> բանաձևը, ընդ որում մետրիկական թենզորի g<sub>∞</sub> բաղադրիչը գրավիտացիոն պոտենցիալի հետ կապված է g<sub>∞</sub>=l+2φ/с<sup>2</sup> առնչությամբ (|φ|<с<sup>2</sup>)։ Թույլ դաշտերի դեպքում Տիեզերական ձգողության ռելյատիվիստական տեսությունից հետևում են մի շարք էֆեկտներ (լույսի կարմիր շեղում, [[Ճառագայթում|ճառագայթի]] թեքում, մոլորակների [[Ուղեծիր|ուղեծրերի]] լրացուցիչ դարավոր պտույտ ևն), որոնք հաստատված են դիտողական փաստերով։ Ուժեղ դաշտերի էֆեկտները (երկնային մարմինների կոլապս, [[Սև խոռոչներ|սև խոռոչներ]]) այդպիսի հաստատում դեռևս չունեն։ Որոշակի հիմքեր կան ենթադրելու, որ էյնշտեյնի տիեզերական ձգողության տեսությունը շատ ուժեղ դաշտերի դեպքում ճշգրտումների կարիք է զգում։ Պետք է նշել նաև, որ նյութի տարածական բաշխման մասին կատարելով որոշակի ենթադրություններ (համասեռություն և իզոտրոպություն), վերջին հավասարման լուծումից ստացվում է տիեզերքի ընդարձակման երևույթը ([[Հաբլի օրենք|Հաբլի էֆեկտ]])։
 
 
== Տես նաև ==
8988

edits

Նավարկման ցանկ