Էլեկտրամագնիսական դաշտ

Վիքիպեդիայից՝ ազատ հանրագիտարանից

Էլեկտրամագնիսական դաշտ[խմբագրել]

Էլեկտրամագնիսական դաշտը մատերիայի ձև է, որն իրականացնում է լիցքավորված մասնիկների փոխազդեցությունը: Էլեկտրամագնիսական դաշտի աղբյուրը դադարի կամ շարժման վիճակում գտնվող էլեկտրական լիցքերն են: Անշարժ լիցքերի շուրջը գոյություն ունի ստատիկ էլեկտրական դաշտ, հավասարաչափ-ուղղագիծ շարժման դեպքում լրացուցիչ առաջանում է ստատիկ մագնիսական դաշտ, իսկ արագացումով շարժվելիս ստեղծվում է փոփոխական էլեկտրամագնիսական դաշտ, որի մի մասն անջատվում է լիցքերից և ճառագայթվում տարածության մեջ էլեկտրամագնիսական ալիքների ձևով:

Էլեկտրամագնիսական դաշտը բնութագրվում է էլեկտրական դաշտի լարվածության E am.png և մագնիսական դաշտի լարվածության H am.png վեկտորներով, որոնց մեծությունն ու ուղղությունը, ընդհանուր առմամբ, տարածության տարբեր կետերում տարբեր է, ընդ որում՝ փոփոխական մագնիսական դաշտը սկզբնավորում է փոփոխական էլերկտրական դաշտ (էլեկտրամագնիսական ինդուկցիայի երևույթ)և հակառակը: Էլեկտրական և մագնիսական դաշտերը կարելի է առանձին-առանձին դիտարկել միայն դանդաղ փոփոխվող էլեկտրամագնիսական դաշտի դեպքում, երբ դրանց փոխադարձ կապը էական չէ: Պետք է նկատի ունենալ, սակայն, որ էլեկտրամագնիսական դաշտի բաժանումը երկու դաշտերի պայմանական է: E am.png և H am.png կարելի է արտահայտել օժանդակ φ և A am.png մեծությունների՝ պոտենցիալների օգնությամբ: Տրված E am.png և H am.png դաշտերի համար φ և A am.png պոտենցիալների ընդհանրությունը միարժեք չէ: Այդ հանգամանքը թույլ է տալիս φ և A am.png ընտրել տվյալ խնդրի պահանջներին համապատասխան՝ նրանց վրա դնելով լրացուցիչ տրամաչափարկման պայման: Էլեկտրամագնիսական դաշտի էներիգիայի խտությունը վակուումում որոշվում է Pal2 am.png բանաձևով, իսկ միավոր մակերեսի միջով (այդ մակերեսին ուղղահայաց ուղղությամբ) վայրկյանում անցնող էլեկտրամագնիսական էներգիայի հոսքը՝ Պոյնտինգի վեկտորով՝ Pal3 am.png(c-ն լույսի արագությունն է): Էլեկտրամագնիսական երկու (կամ մի քանի) դաշտերի վերադրման դեպքում էլեկտրական և մագնիսական դաշտի լարվածությունները գումարվում են՝ Pal4 am.png, Pal5 am.png (E am.png, E am.png, H1 am.png,H2 am.png բաղադրիչ դաշտերի լարվածություններն են): Արդյունարար էլեկտրամագնիսական դաշտի էներգիայի խտությունը որոշելիս բաղադրիչ դաշտերի էներգիայի խտություններից բացի, պետք է հաշվի առնել նաև այդ դաշտերի փոխադարձ էներգիան:
Էլեկտրամագնիսական դաշտի E am.png և H am.png լարվածությունները լիցքերի տվյալ բաշխման դեպքում կարելի է գտնել Մաքսվելի հավասարումներից: Այդ հավասարումներից հետևում է, որ էլեկտրամագնիսական դաշտը (էլեկտրամագնիսական ալիքները) վակուումում տարածվում է Pal6 am.png արագությամբ, որն անփոփոխ է մնում իներցիալ մի համակարգից մյուսին անցնելիս: E am.png և H am.png վեկտորները իներցիալ մի համակարգից մյուսին անցնելիս ձևափոխվում են այնպես, ինչպես Pal1 am.png քառաչափ թենզորի համապատասխան բաղադրիչները: Այս հանգամանքն ապահովում է Մաքսվելի հավասարումների ինվարիանտությունը Լորենցի ձևափոխումների նկատմամբ: Էլեկտրամագնիսական դաշտի տեսության կիրառումների զգալի մասը պահանջում է Մաքսվելի հավասարումների ձևակերպումը նյութական միջավայրի համար: Այս դեպքում հավասարումների մեջ անհրաժեշտ է հաշվի առնել նաև միջավայրի լիցքերի և դրանց ստեղծած էլեկտրական հոսանքների համապատասխանաբար միջինացված արժեքները:
Էլեկտրամագնիսական դաշտի՝ Մաքսվելի հավասարումների վրա հիմնված տեսությունը՝ դասական էլեկտրադինամիկան, ընդգրկում է այնպիսի բնագավառներ, ինչպիսիք են ժամանակակից էլեկտրատեխնիկան և ռադիոտեխնիկան, ռադիոֆիզիկան, օպտիկան ևն: Սակայն էլեկտրամագնիսական դաշտի դասական տեսությունը կիրառելի չէ շատ բարձր հաճախականության էլեկտրամագնիսական ալիքների համար: Մասնավորապես, այդ տեսությունն անկարող եղավ բացատրել էլեկտրամագնիսական ալիքների կլանումը և ճառագայթումը, Քոմփթոնի էֆեկտը, էլեկտրոն-պոզիտրոն զույգի առաջացումը և մի շարք այլ երևույթներ, որոնք իրենց հիմնավորումը գտան դաշտի քվանտային տեսության շրջանակներում՝ քվանտային էլեկտրադինամիկայում, որտեղ լիցքավորված համակարգերի և վակուումի քվանտամեխանիկական նկարագրությանը զուգընթաց տրվում է էլեկտրամագնիսական դաշտի մասնիկային նկարագրությունը: Այդ անցումը կատարվում է քվանտային եղանակով: Վերջինս նշանակում է, որ ω հաճախականությամբ էլեկտրամագնիսական դաշտին համապատասխանության մեջ է դրվում լույսի մասնիկների՝ ֆոտոնների մի համախումբ, որոնցից յուրաքանչյուրը շարժվում է c արագությամբ, ունի հանգիստ զրոյական զանգված, էներգիա, hk շարժման քանակ ( հ-ը Պլանկի հաստատունն է, k=c/ω )և 1-ի հավասար սպին: Էլեկտրամագնիսական դաշտի ինտենսիվությունը համապատասխանում է ֆոտոնների թվին: Նյութական համակարգի և Էլեկտրամագնիսական դաշտի փոխազդեցությունը համարժեք է այդ համակարգի և ֆոտոնների փոխազդեցությանը: