Ազատ էնտրոպիա

Վիքիպեդիայից՝ ազատ հանրագիտարանից

Ազատ էնտրոպիա, էնտրոպիկ թերմոդինամիկական պոտենցիալ, ազատ էներգիայի անալոգը։ Հայտնի է նաև Պլանկի կամ Մասսիո-Պլանկի պոտենցիալ (կամ ֆունկցիա) կամ հազվադեպ՝ ազատ տեղեկություն անունով։ Վիճակագրական մեխանիկայում ազատ էնտրոպիան հաճախ ի հայտ է գալիս որպես վիճակագրական գումարի լոգարիթմ։ Մասնավորապես Օնզագերի առնչությունները մշակվում են էնտրոպիկ պոտենցիալի տերմիններով։ Մաթեմատիկայում ազատ էնտրոպիան խիստ տարբեր բան է․ այն էնրոպիայի ընդհանրացումն է՝ սահմանված ազատ հավանականությամբ։

Ազատ էնտրոպիան առաջանում է էնտրոպիայի Լեժանդրի ձևափոխություններից։ Տարբեր պոտենցիալներ համապատասխանում են տարբեր սահմանափակումների, որոնց կարող է ենթարկվել համակարգը։

Օրինակներ[խմբագրել | խմբագրել կոդը]

Ամենատարածված օրինակներն են՝

Պլանկի պոտենցիալ \ Գիբսի ազատ էնտրոպիա
Անուն Ֆունկցիա Այլընտ․ ֆունկցիա Բնական փոփոխականներ
Էնտրոպիա
Մասսիոյի պոտենցիալ \ Հելմհոլցի ազատ էնտրոպիա

որտեղ

էնտրոպիան է,
-ն՝ Մասսիոյի պոտենցիալը[1][2]
-ն Պլանկի պոտենցիալն է[1]
-ն՝ ներքին էներգիան

-ն՝ ջերմաստիճանը
-ն՝ ճնշումը
-ն՝ ծավալը
-ն՝ Հելմհոլցի ազատ էներգիան

-ն՝ Գիբսի ազատ էներգիան
-ն՝ i-րոդ քիմիական բաղադրիչը կազմող մասնիկների թիվը
-ն՝ i-րդ քիմիական բաղադրիչի քիմիական պոտենցիալը
-ը՝ քիմիական բաղադրիչների թիվը
-ն՝ -րդ բաղադրիչը։

Նշենք, որ Մասսիոյի և Պլանկի տերմիններ կիրառությունը Մասսիո-Պլանկի պոտենցիալների համար ինչ-որ չափով երկիմաստ է և ոչ ճշգրիտ։ Մասնավորապես, Պլանկի պոտենցիալն ունի այլընտրանքային նշանակություն։ Էնտրոպիկ պոտենցիալի ամենաստանդարտ նշանակումը -ն է, որը կիրառել են թե՛ Մաքս Պլանկը, թե՛ Շրյոդինգերը։ Գիբսը կիրառել է -ն՝ նշանակելու համար ազատ էներգիան։ Ազատ էնտրոպիաները հայտնաբերել է ֆրանսիացի ինժեներ Ֆրանսուա Մասսիոն 1869 թվականին, և փաստորեն դրանով կանխատեսել է Գիբսի ազատ էներգիան (1875)։

Պոտենցիալների կախումը բնական փոփոխականներից[խմբագրել | խմբագրել կոդը]

Էնտրոպիա[խմբագրել | խմբագրել կոդը]

Ըստ լրիվ դիֆերենցիալի սահմանման՝

։

Թերմոդինամիկական վիճակի հավասարումներից,

։

Այստեղ դիֆերենցիալները բոլորը էքստենսիվ փոփոխականներ են, այնպես որ նրանք կարող են ինտեգրվել՝ հանգելով

։

Մասսիոյի պոտենցիալ / Հելմհոլցի ազատ էնտրոպիա[խմբագրել | խմբագրել կոդը]

Վերցնելով -ի սահմանումը և լրիվ դիֆերենցելով՝ Լեժանդրի ձևափոխությունների միջոցով կունենանք

,
,
։

Վերևի դիֆերենցիալներն էքստենսիվ մեծություններ չեն, այնպես որ հավասարումը կարող է ուղղակի չինտեգրվել։ -ից տեսնում ենք, որ

։

Եթե հակադարձ փոփոխականները ցանկալի չեն[3]:222

,
,
,
,
։

Պլանկի պոտենցիալ / Գիբսի ազատ էնտրոպիա[խմբագրել | խմբագրել կոդը]

Վերցնելով -ի սահմանումը և լրիվ դիֆերենցելով՝ Լեժանդրի ձևափոխությունների միջոցով ունենք

։

Վերևի դիֆերենցիալները բոլորը էքստենսիվ մեծություններ չեն, այնպես որ հավասարումը կարող է ուղղակի չինտեգրվել։ -ից տեսնում ենք, որ

։

Եթե հակադարձ փոփոխականները ցանկալի չեն[3]:222

,
,
,
,
։

Ծանոթագրություններ[խմբագրել | խմբագրել կոդը]

  1. 1,0 1,1 Antoni Planes, Eduard Vives (2000-10-24)։ «Entropic variables and Massieu-Planck functions»։ Entropic Formulation of Statistical Mechanics։ Universitat de Barcelona։ Արխիվացված է օրիգինալից 2008-10-11-ին։ Վերցված է 2007-09-18 
  2. T. Wada, A.M. Scarfone (December 2004)։ «Connections between Tsallis' formalisms employing the standard linear average energy and ones employing the normalized q-average energy»։ Physics Letters A 335 (5–6): 351–362։ Bibcode:2005PhLA..335..351W։ arXiv:cond-mat/0410527։ doi:10.1016/j.physleta.2004.12.054 
  3. 3,0 3,1 The Collected Papers of Peter J. W. Debye։ New York, New York: Interscience Publishers, Inc.։ 1954 

Գրականություն[խմբագրել | խմբագրել կոդը]

  • Massieu M.F. (1869)։ «Compt. Rend» 69 (858)։ էջ 1057 
  • Callen Herbert B. (1985)։ Thermodynamics and an Introduction to Thermostatistics (2nd ed.)։ New York: John Wiley & Sons։ ISBN 0-471-86256-8