Միջնակետ
Երկրաչափությունում հատվածի միջնակետ է կոչվում այն կետը, որը տրոհում է հատվածը երկու հավասար մասերի։ Այն հավասարահեռ է հատվածի ծայրակետերից, այլ կերպ ասած՝ կիսում է հատվածը։
Բանաձևը
[խմբագրել | խմբագրել կոդը]n-չափանի տարածությունում ու ծայրակետերով հատվածի միջնակետը կարելի է հաշվել բանաձևով, այսինքն՝ -րդ կոորդինատը հանդիսանում է և կետերի -րդ կոորդինատների կիսագումարը ( = 1, 2, ..., n)։
:
Կառուցումը
[խմբագրել | խմբագրել կոդը]Տրված հատվածի միջնակետը կարելի է ստանալ կարկինի և քանոնի օգնությամբ։ Սկզբում պետք է կարկինի միջոցով գծել երկու հատվող շրջանագծեր, որոնց կենտրոնները տրված հատվածի ծայրակետերն են և որոնք ունեն հավասար շառավղեր։ Այնուհետ քանոնի միջոցով պետք է միացնել այդ շրջանագծերի հատման կետերը։ Այդ հատվածը կհանդիսանա նշված երկու շրջանագծերի ընդհանուր աղեղը։ Վերջինիս հատման կետը տրված հատվածի հետ որոնելի միջնակետն է։ Իհարկե, ըստ Մորա-Մասկերոնիի թեորեմի, հատվածի միջնակետը կարելի է կառուցել նաև օգտագործելով միայն կարկին, սակայն փաստացի կառուցումը բավականին բարդ է[1][2][3]։
Միջնակետի երկրաչափական հատկությունները
[խմբագրել | խմբագրել կոդը]Շրջանագիծ
[խմբագրել | խմբագրել կոդը]Շրջանագծի ցանկացած տրամագծի միջնակետ համարում է շրջանագծի կենտրոն։
Շրջանագծի ցանկացած աղեղի միջնուղղահայաց(այն ուղիղը որն անցնում է հատվածի միջնակետով և ուղղահայաց է հատվածին) անցնում է շրջանագծի կենտրոնով։
Էլիպս
[խմբագրել | խմբագրել կոդը]Էլիպսի մակերեսը կամ երկարությունը կիսող ցանկացած լարի միջնակետ էլիպսի կենտրոնն է։
Էլիպսի կենտրոնը նաև համընկնում է իր երկու կիզակետերին իրար միացնող հատվածի միջնակետի հետ։
Հիպերբոլ
[խմբագրել | խմբագրել կոդը]Հիպերբոլի գագաթներն իրար միացնող հատվածի միջնակետը հիպերբոլի կենտրոնն է։
Եռանկյուն
[խմբագրել | խմբագրել կոդը]Եռանկյան կողմերի միջնուղղահայացների հատման կետը հանդիսանում է այդ եռանկյան արտագծած շրջանագծի կենտրոնը։
Եռանկյան միջնագիծ է կոչվում գագաթը հանդիպակաց կողմի միջնակետին միացնող հատվածը։ Եռանկյան երեք միջնագծերի հատման կետը հանդիսանում է այդ եռանկյան ծանրության կենտրոնը։ Այլ կերպ ասած՝ մետաղյա համասեռ եռանկյյունաձև թաղանթը կհավասարակշռվի իր միջնագծերի հատման կետում տեղադրած հենարանի վրա։
Եռանկյան ինը կետերի շրջանագծի կենտրոնը համընկնում է այդ եռանկյան արտագծած շրջանագծի կենտրոնն ու օրթոկենտրոնն իրար միացնող հատվածի միջնակետի հետ։
Եռանկյան միջին գիծը այդ եռանկյան երկու կողմերի միջնակետերն իրար միացնող հատվածն է։ Այն զուգահեռ է եռանկյան երրորդ կողմին իսկ երկարությունը հավասար է այդ կողմի երկարության կեսին։
Ցանկացած եռանկյան մեկ ձևով կարելի է ներգծել էլիպս, որը շոշափում է բոլոր երեք կողմերը դրանց միջնակետերում։ Նշված էլիպսը կոչվում էՇտեյների ներգծյալ էլիպս, դրա կենտրոնը համընկնում է եռանկյանը ներգծած շրջանագծի կենտրոնի հետ և այն օժտված է մի հատկությամբ, որ եռանկյանը ներգծած բոլոր էլիպսների մեջ ունի մեծագույն մակերեսը։
Ուղղանկյուն եռանկյանն արտագծած շրջանագծի կենտրոնը համընկնում է ներքնաձիգի միջնակետի հետ։
Գրականություն
[խմբագրել | խմբագրել կոդը]- А. Н. Костовский Геометрические построения одним циркулем. — М.: «Наука» Главная редакция физико-математической литературы, 1984. — (Популярные лекции по математике).
- Август Адлер Теория геометрических построений. — Ленинград: Государственное учебно-педагогическое издательство Наркомпроса РСФСР, Ленинградское отделение, 1940.
- Р. Курант, Г. Роббинс Что такое математика?. — 3-е. — МЦНМО, 2001. — ISBN 5–900916–45–6
- Jiu Ding, L. Richard Hitt, Xin-Min Zhang Markov chains and dynamic geometry of polygons // Linear Algebra and its Applications. — 2003. — Т. 367. —
- Francisco Gomez-Martin, Perouz Taslakian, Godfried T. Toussaint 18th Fall Workshop on Computational Geometry. — 2008.
- H. S. M. Coxeter The Real Projective Plane. — New York, Toronto, London: McGraw-Hill, 1949.
- Х. С. М. Коксетер Действительная проективная плоскость. — М.: Физматлит, 1959.
- Nathan Altshiller-Court College Geometry. — Mineola, New York: Dover Publ., 2007.
Ծանոթագրություններ
[խմբագրել | խմբագրել կոդը]- ↑ Костовский, 1984, էջ 20
- ↑ Курант, Роббинс, 2001, էջ 172—179
- ↑ «Wolfram mathworld». 2010 թ․ սեպտեմբերի 29.
Արտաքին հղումներ
[խմբագրել | խմբագրել կոդը]- Animation — showing the characteristics of the midpoint of a line segment
- What is Midpoint Formula Արխիվացված 2021-04-20 Wayback Machine
|