Միավորում (բազմությունների տեսություն)
Ենթակատեգորիա | • occurrent • իրադարձություն • կապ | |
---|---|---|
Նկարագրող բանաձև | ||
In defining formula | , , | |
Բնութագրվում է | տեղափոխականություն, զուգորդականություն | |
TeX string | \cup | |
Հակառակը | հատում |
Միավորում (նշվում է ∪-ով),բազմությունների տեսության մեջ բազմությունների հավաքածուի բոլոր տարրերի բազմությունը[1] , հիմնական գործողություններից մեկն է, որի միջոցով բազմությունները կարող են համակցվել և առնչվել միմյանց հետ:Զրոյական միավորում, զրոյի միավորումը, ըստ սահմանման հավասար է դատարկ բազմությանը։
Երկու բազմությունների միավորում
[խմբագրել | խմբագրել կոդը]Երկու A և B բազմությունների միավորումը այն տարրերի բազմությունն է, որոնք պատկանում են A և B բազմություններից գոնե մեկին [2]։
- .[3]
- Օրինակ՝ եթե A = {1, 3, 5, 7} և B = {1, 2, 4, 6, 7}, ապա A ∪ B = {1, 2, 3, 4, 5, 6, 7}։
- Ավելի մանրամասն օրինակ (որը ներառում է երկու ոչ սահմանափակ բազմություն) հետևյալն է.
- A = {x-ը 1-ից մեծ զույգ ամբողջ թիվ է},
- B = {x-ը 1-ից մեծ կենտ ամբողջ թիվ է},
- ապա՝
Որպես մեկ այլ օրինակ, 9 թիվը չի պատկանում պարզ թվերի բազմության {2, 3, 5, 7, 11, ...} և զույգ թվերի բազմության {2, 4, 6, 8, 10, ...} միավորմանը, քանի որ 9-ը ո՛չ պարզ է, ո՛չ զույգ։
Բազմությունները չեն կարող ունենալ կրկնվող տարրեր,այդ իսկ պատճառով {1, 2, 3} և {2, 3, 4} միավորումը {1, 2, 3, 4} է։
Տարրերի կրկնությունները չեն ազդում բազմության հզորության և պարունակության վրա։
Հանրահաշվական հատկություններ
[խմբագրել | խմբագրել կոդը]Բինար միավորումը ասոցիատիվ գործողություն է։Այսինքն ցանկացած բազմության համար տեղի ունի
հավասարությունը։
Այսպիսով, փակագծերը կարող ենք բաց թողնել առանց երկիմաստության:Հավասարության երկու մասերն էլ կարող ենք գրել AᑌBᑌC։Միավորումը նաև կոմուտատիվ է, այսինքն բազմությունները կարող են գրվել կամայական հերթականությամբ[4]։ Դատարկ բազմությունը միավորման համար չեզոք տարր է,այսինքն՝ AᑌØ=A, կամայական A բազմության համար։Միավորման համար տեղի ունի նաև հավասարությունը։ Այս բոլոր հատկությունները բխում են դիզյունկցիայի անալոգային փաստերից։
Հատումը և միավորումը իրար հետ կապված են հետևյալ հավասարություններով․[2]
U բազմության բոլոր ենթաբազմությունների բազմությունը, միավորման,հատման և լրացման գործողությունների հետ վերցրած,կազմում է Բուլյան հանրահաշիվը։
Բուլյան հանրահաշվում միավորումը կարող է ներկայացվել լրացման և հատման միջոցով հետևյալ բանաձևով․որտեղ ցուցիչը ցույց է տալիս լրացումը U ունիվերսալ բազմության մեջ :
Վերջավոր միավորումներ
[խմբագրել | խմբագրել կոդը]Հնարավոր է վերցնել միաժամանակ մի քանի բազմությունների միավորում։Օրինակ, A, B, and C բազմությունների միավորումը պարունակում է A-ի բոլոր տարրերը, B-ի բոլոր տարրերը, C-ի բոլոր տարրերը, և ավել ոչինչ։Հետևաբար, x-ը պատկանում է A ∪ B ∪ C-ին այն և միայն այն դեպքում,եթե x-ը պատկանում է A, B, and C բաղմություններից գոնե մեկին։
Վերջավոր միավորումն վերջավոր թվով բազմությունների միավորումն է,սակայն այստեղից չի հետևում, որ միավորման բազմությունը վերջավոր բազմություն է[5][6]։
Անվերջ միավորումներ
[խմբագրել | խմբագրել կոդը]Ամենաընդհանուր հասկացությունը բազմությունների կամայական հավաքածուի միավորումն է, որը երբեմն կոչվում է անվերջ միավորում։Եթե M -ը բազմություն է կամ դաս, որի տարրերը բազմություններ են ,ապա x -ը M -ի տարր է այն և միայն այն դեպքում եթե գոըություն ունի գոնե մի A տարր M -ից այնպիսին,որ x -ը պատկանում է A -ին[7] ։
Այս գաղափարը ընդհանրացնում է նախորդող դրույթները։Օրինակ՝ A ∪ B ∪ C -ը {A, B, C} հավաքածուի միավորումն է։Մեկ այլ օրինակ՝ եթե M -ը դատարկ հավաքածու է, ապա M -ի միավորումը դատարկ բազմությունն է։
Նշանակումներ
[խմբագրել | խմբագրել կոդը]Ընդհանուր գաղափարի նշանակումը զգալիորեն տարբերվում է։Բազմությունների վերջավոր միավորման համար հիմնականում օգտագործում են կամ նշանակումը։Անվերջ միավորումների տարածված նշանակումներից են , և ձևերը։Թվարկածներից վերջինը վերաբերում է հավաքածուի միավորմանը, որտեղ I -ն ինդեքսային բազմություն է և -ն բազմություն է կամայական համար։Այն դեպքում,երբ I ինդեքսին համապատասխան բազմությունը բնական թվերի բազմությունն է,օգտագործվում է նշանակումը, որը նման է անվերջ գումարների շարքին[7]։
Երբ "∪" նշանը դրվում է մյուս նշաններից առաջ (դրանց միջև դրվելու փոխարեն), այն սովորաբար գրում են ավելի մեջ չափով։
Նշանի գրելաձև
[խմբագրել | խմբագրել կոդը]Յունիկոդում,միավորումը ներկայացված է U+222A ∪ union սիմվոլով[8]։ TeX-ում նշվում է որպես ՝\cup
,իսկ նշվում է որպես՝ \bigcup։
Ծանոթագրություններ
[խմբագրել | խմբագրել կոդը]- ↑ Weisstein, Eric W. «Union». Wolfram Mathworld. Արխիվացված օրիգինալից 2009-02-07-ին. Վերցված է 2009-07-14-ին.
- ↑ 2,0 2,1 «Set Operations | Union | Intersection | Complement | Difference | Mutually Exclusive | Partitions | De Morgan's Law | Distributive Law | Cartesian Product». Probability Course. Վերցված է 2020-09-05-ին.
- ↑ Vereshchagin, Nikolai Konstantinovich; Shen, Alexander (2002-01-01). Basic Set Theory (անգլերեն). American Mathematical Soc. ISBN 9780821827314.
- ↑ Halmos, P. R. (2013-11-27). Naive Set Theory (անգլերեն). Springer Science & Business Media. ISBN 9781475716450.
- ↑ Dasgupta, Abhijit (2013-12-11). Set Theory: With an Introduction to Real Point Sets (անգլերեն). Springer Science & Business Media. ISBN 9781461488545.
- ↑ «Finite Union of Finite Sets is Finite». ProofWiki. Արխիվացված օրիգինալից 11 September 2014-ին. Վերցված է 29 April 2018-ին.
- ↑ 7,0 7,1 Smith, Douglas; Eggen, Maurice; Andre, Richard St (2014-08-01). A Transition to Advanced Mathematics (անգլերեն). Cengage Learning. ISBN 9781285463261.
- ↑ «The Unicode Standard, Version 15.0 – Mathematical Operators – Range: 2200–22FF» (PDF). Unicode. էջ 3.
Արտաքին հղումներ
[խմբագրել | խմբագրել կոդը]- Hazewinkel, Michiel, ed. (2001) [1994], «Union of sets», Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
- Infinite Union and Intersection at ProvenMath De Morgan's laws formally proven from the axioms of set theory.