Մասնակի ածանցյալներով դիֆերենցիալ հավասարումներ

Վիքիպեդիայից՝ ազատ հանրագիտարանից

Մասնական ածանցյալներով հավասարումներ, հավասարումներ, որոնցում անհայտը մի քանի փոփոխականի ֆունկցիա է, ընդ որում՝ այդ հավասարումը, բացի անհայտ ֆունկցիայից, պարունակում է նաև այդ ֆունկցիայի մասնական ածանցյալները, ինչպես նաև անկախ փոփոխականներ։ Այսպիսով, եթե -ը տրված ֆունկցիա է, ապա փոփոխականի անհայտ ֆունկցիայի նկաամամբ մասնական ածանցյալներով հավասարումները ունի հետևյալ տեսքը՝

հավասարման մեջ -ի մասնական ածանցյալների ամենաբարձր կարգը կոչվում է հավասարման կարգ։ Եթե ֆունկցիան ըսա յուրաքանչյուր արգումենտի (բացառությամբ գուցե երի) գծային է, ապա -ը կոչվում է գծային հավասարում։ Այսպես՝

++

տեսքի հավասարումը (, -ն, -ն, -ը) փոփոխականների հայտնի ֆունկցիաներ են, իսկ -ն՝ նույն փոփոխականների անհայտ ֆունկցիա) գծային, երկրորդ կարգի մասնական ածանցյալներով հավասարումներ է։

Մտցվում է մասնական ածանցյալներով հավասարումների դասակարգում, այն առավել պարզ է տեսքի հավասարումների համար. եթե

-ի նկատմամբ հանրահաշվական հավասարման բոլոր արմատներն ունեն նույն նշանը, ապա հավասարումը անվանում են էլիպսական տիպի, եթե արմատներից մեկն ունի մյուս -ին հակադիր նշան, ապա՝ հիպերբոլական, և եթե մեկ արմատը է, իսկ մյուսները նույն նշանի՝ պարաբոլական։

Մասնական ածանցյալներով հավասարումներին բերվող խնդիրների համար մտցվում է կոռեկտության հասկացություն, խնդիրը կոչվում է կոռեկտ, եթե համապատասխան մասնական ածանցյալներով հավասարմմն լուծումը գոյություն ունի, միակն է և կայուն՝ խնդրի պայմանների փոքր փոփոխությունները առաջ են բերում լուծման փոքր փոփոխություն։

Տես նաև[խմբագրել | խմբագրել կոդը]

Այս հոդվածի կամ նրա բաժնի որոշակի հատվածի սկզբնական կամ ներկայիս տարբերակը վերցված է Քրիեյթիվ Քոմմոնս Նշում–Համանման տարածում 3.0 (Creative Commons BY-SA 3.0) ազատ թույլատրագրով թողարկված Հայկական սովետական հանրագիտարանից  (հ․ 7, էջ 271 CC-BY-SA-icon-80x15.png