Արտագծյալ քառանկյուն

Վիքիպեդիայից՝ ազատ հանրագիտարանից
Jump to navigation Jump to search
Արտագծյալ քառանկյան օրինակ

Էվկլիդեսյան երկրաչափության մեջ արտագծյալ քառանկյուն է կոչվում այն ուռուցիկ քառանկյունը, որի բոլոր կողմերը շոշափում են նույն շրջանագիծը։ Այս շրջանագիծը կոչվում է քառանկյանը ներգծված շրջանագիծ։ Արտագծյալ քառանկյունը արտագծյալ բազմանկյան մասնավոր դեպք է։ Ի տարբերություն եռանկյունների ոչ բոլոր քառանկյուններին է հնարավոր ներգծել շրջանագիծ։ Ինչպես օրինակ ուղղանկյունը, որը քառակուսի չէ։

Մասնավոր դեպքեր[խմբագրել | խմբագրել կոդը]

Արտագծյալ քառանկյան օրինակ են դելտոիդները, որոնց են մտնում շեղանկյունը և քառակուսինը։ Արտագծյալ քառանկյան մասնավոր օրինակ է արտագծյալ սեղանը։

Հատկություններ[խմբագրել | խմբագրել կոդը]

Արտագծյալ քառանկյան մեջ բոլոր չորս անկյունների կիսորդները հատվում են ներգծյալ շրջանագծի կենտրոնում։ Եթե ուռուցիկ քառանկյան բոլոր չորս անկյունների կիսորդները հատվում են մի կետում, ուրեմն այդ քառանկյունը արտագծյալ քառանկյուն է, իսկ հատմակ կետը՝ ներգծյալ շրջանակծի կենտրոնը[1]։

Ըստ Պիտոտի թեորեմի՝ արտագծյալ քառանկյան հանդիպակած կողմերի գումարները հավասար են, որը նաև հավասար է քառանկյան կիսապարագծին․

Եթե ուռուցիկ քառանկյան մեջ ճիշտ է a + c = b + d հավասարումը, ուրեմն այն արտագծյալ քառանկյուն է[2]:p.65[1]։

Եթե ABCD ուռուցիկ քառանկյան (որը սեղան չէ) հանդիպակած կողմերը հատվում են E և F կետերում, ուրեմն այդ քառանկյունը արտագծյալ է այն և միայն այն դեպքում, երբ[1]

կամ

ABCD ուռուցիկ քառանկյունը արտագծյալ է այն և միայն այն դեպքում, երբ ABC և ADC եռանկյունների ներգծած շրջանագծերը շոշափում են իրար[2]:p.66։

1954 թվականին Այսիֆեսքուն ապացուցել է, որ ուռուցիկ քառանկյանը հնարավոր է ներգծել շրջանագիծ այն և միայան այն դեպքում, երբ[3]

։

Մակերես[խմբագրել | խմբագրել կոդը]

Ոչ-եռանկյունաչափական բանաձևեր[խմբագրել | խմբագրել կոդը]

Արտագծյալ քառանկյան K մակերեսը հավասար է՝

որտեղ s-ը քառանկյան կիսապարագիծն է, իսկ r-ը՝ ներգծված շրջանագծի շառավիղը։ Մակերեսը կարելի է հաշվել նաև այս բանաձևով՝[4]

որտեղ մակերեսը ներկայացվում է p, q անկյունագծերով և a, b, c, d կողմերով։

Ծանոթագրություններ[խմբագրել | խմբագրել կոդը]

  1. 1,0 1,1 1,2 Andreescu, Titu and Enescu, Bogdan, Mathematical Olympiad Treasures, Birkhäuser, 2006, pp. 64–68.
  2. 2,0 2,1 Josefsson, Martin (2011), «More Characterizations of Tangential Quadrilaterals», Forum Geometricorum 11: 65–82, http://forumgeom.fau.edu/FG2011volume11/FG201108.pdf .
  3. Minculete, Nicusor (2009), «Characterizations of a Tangential Quadrilateral», Forum Geometricorum 9: 113–118, http://forumgeom.fau.edu/FG2009volume9/FG200910.pdf .
  4. Durell, C.V. and Robson, A., Advanced Trigonometry, Dover reprint, 2003, pp. 28–30.

Արտաքին հղումներ[խմբագրել | խմբագրել կոդը]