Ուռուցիկ երկրաչափություն
Մաթեմատիկայում ուռուցիկ երկրաչափությունը երկրաչափության այն ճյուղն է, որն ուսումնասիրում է ուռուցիկ բազմություններ , հիմնականում Էվկլիդյան տարածությունում։ Ուռուցիկ բազմությունները հիմնականում հանդիպում են հաշվողական երկրաչափությունում, ուռուցիկ անալիզում, դիսկրետ երկրաչափությունում, ֆունկցիոնալ անալիզում, թվերի երկրաչափությունում, ինտեգրալ երկրաչափությունում, գծային ծրագրման մեջ, հավանականությունների տեսությունում, խաղերի տեսությունում և այլ ճյուղերում։
Դասակարգում
[խմբագրել | խմբագրել կոդը]Ըստ Մաթեմատիկայի առարկաների դասակարգման, ուռուցիկ և դիսկրետ երկրաչափություն մաթեմատիկական առարկան ներառում է 3 հիմնական ճյուղեր․[1]
- Ընդհանուր ուռուցիկություն
- բազմանկյուն և բազմանիստ
- դիսկրետ երկրաչափություն[2]
(Չնայած նշվածներից միայն 2-ն են ներառվում ուռուցիկ երկրաչափության մեջ)
Ընդհանուր ուռուցիկությունը բաժանվում է հետևյալ ենթախմբերի․
- Աքսիոմատիկ և ընդհանրացված ուռուցիկություն
- ուռուցիկ բազմություններ առանց չափային սահամանափակման
- ուռուցիկ բազմությունները տոպոլոգիական վեկտորական տարածությունում
- ուռուցիկ բազմություն երկչափ տարածությունում
- ուռուցիկ բազմություն եռաչափ տարածությունում
- ուռուցիկ բազմություն n-չափանի տարածությունում
- սահմանափակ չափանի Բանախյան տարածություն
- պատահական ուռուցիկ բազմություններ և ինտեգրալ երկրաչափություն
- ուռուցիկ մարմինների ասիմպտոտիկ թեորեմ
- մոտարկում ուռուցիկ բազմություններով
- ուռուցիկ բազմությունների տարատեսակներ
- Հելիակերպ թեորեմներ և երկրաչափական հատման տեսություն
- Կոմբինատոր ուռուցիկության այլ խնդիրներ
- երկարություն, մակերես, ծավալ
- միախառնված տարածություններ և հարակից թեմաներ
- անհավասարություններ և էքստրեմումի խնդիրներ
- ուռուցիկ ֆունկցիաներ և ուռուցիկ ծրագրեր
- մակերևույթային և հիպերբոլային ուռուցիկություն
Ուռուցիկ երկրաչափության եզրույթը օգտագործվում է նաև կոմբինատորիկայում, որպես անտիմատրոիդի այընտրանքային անուն, որը ուռուցիկ բազմության աբստրակտ մոդելներից մեկն է։
Պատմական ակնարկ
[խմբագրել | խմբագրել կոդը]Ուռուցիկ երկրաչափությունը համեմատաբար երիտասարդ մաթեմատիկական ճյուղ է։ Չնայած առաջին հիշատակումները եղել են Էվկլիդեսի և Արքիմեդի աշխատություններում։ Այն, որպես առանձին մաթեմատիկայի ճյուղ, ձևավորվել է 19-րդ դարի վերջում ի շնորհիվ Հերման Բրունի և Հերման Մինկովսկու երկրչափ և եռաչափ տարածություններում։ Իրենց արդյունքների մեծ մասը ընդհանրացվել է ավելի բազմաչափ տարածությունների վրա, և 1934 թվականին Թոմմի Բոննեսենը և Վերնել ֆենչերն տվել են ուռուցիկ երկրաչափության համապարփակ հետազոտությունը Էվկլիդյան տարածությունում։ Հետագայում 20-րդ դարում ուռուցիկ երկրաչափության զարգացումը և իր հարակից ճյուղերի ընդհանրացումը ամփոփվել է «Ուռուցիկ երկրաչափության ձեռնարկ»․աշխատությունում գրված Գրաբերի և Ուիլսսի կողմից
Ծանոթագրություններ
[խմբագրել | խմբագրել կոդը]- ↑ «Website of Mathematics Subject Classification MSC2010». Արխիվացված է օրիգինալից 2015 թ․ ապրիլի 2-ին. Վերցված է 2019 թ․ մարտի 3-ին.
- ↑ «Mathematics Subject Classification MSC2010, entry 52 "Convex and discrete geometry"». Արխիվացված է օրիգինալից 2015 թ․ ապրիլի 2-ին. Վերցված է 2019 թ․ մարտի 3-ին.