ԴՆԱ համակարգիչներ
Այս հոդվածն աղբյուրների կարիք ունի։ Դուք կարող եք բարելավել հոդվածը՝ գտնելով բերված տեղեկությունների հաստատումը վստահելի աղբյուրներում և ավելացնելով դրանց հղումները հոդվածին։ Անհիմն հղումները ենթակա են հեռացման։ |
“DNA համարկիչները” դրանք համակարգիչներ են, որոնք օգտագործում են DNA, բիոքիմիա և մոլեկուլյար կենսաբանություն ավանդական սիլիկոնային հիմքով համակարգչային տեխնոլոգիաների փոխարեն։ DNA համակարգիչները, կամ, ավելի պարզ, բիոմոլեկուլային համակարգիչները, արագ զարգացող միջդիսցիպլինար ոլորտ է։ Գիտական հետազոտությունները այս ոլորտում վերաբերում են DNA համակարգիչների տեսության, փորձարկումների և ծրագրերի։
Պատմություն[խմբագրել | խմբագրել կոդը]
Այս ոլորտը ի սկզբանե առաջ է տարել Հարավային Կալիֆորնիայի Համալսարանի աշխատակից Լեոնարդ Էլմանի կողմից 1994 թվականին։ Էդլմանը ցուցադրեց DNA-ի հայեցակարգ ապացուցող օգուտը, որպես հաշվարկման ձև, որը լուծում էր 7 կետանոց Համիլթոնյան ուղու խնդիրը։ Էդելմանի առային իսկ փորձերից սկսած առաջխաղացումներ են նկատվել և տարբեր Թյուրինգի մեքենաներ, ինչպես ապացուցվել էր, հնարավոր էր կառուցել։
Թեև նախնական հետաքրքրություն էր `օգտագործելով այս նոր մոտեցումը լուծել NP-դժվար խնդիրներ, շուտով պարզ դարձավ, որ դա չէր կարող լինել լավագույնը պիտանի ձևը այս տեսակ հաշվարկման համար, և մի քանի առաջարկ արվեց այս մոտեցման համար killer ծրագիր գտնելու ուղղությամբ։ 1997 թ.-ին համակարգչային գիտնական Միցունորի Օգիհարան, աշխատելով կենսաբան Անիմեշ Ռայի հետ, առաջարկեց մեկը, որպես բուլային սխեմաների գնահատում և նկարագրեց իրականացման ձևերը։
2002 թ.-ին, Իսրայելի Ռեվոհոթ քաղաքի Weizmann գիտական ինստիտուտի հետազոտողներ երևան հանեցին ծրագրավորվող մոլեկուլյար հաշվիչ մեքենա` կազմված ենզիմներից ու DNA մոլեկուլներից, սիլիկոնե միկրոչիպերի փոխարեն։
2004 թ. ապրիլի 28-ին Weizmann ինստիտուտի աշխատակիցներ Էհուդ Շապիրոն, Յաակով Բենեսոնը, Բինյամին Գիլը, Ուրի Բեն-Դորը և Ռիվկա Ադարը հայտնեցինNature ամսագրին, որ նրանք ստեղծել են DNA համակարգիչ մուտքային և ելքային մոդուլով, որը տեսականորեն կարող էր ախտորոշել քաղցկեղային ակտիվությունը բջիի ներսում և նշանակել հակաքաղցկեղային դեղամիջոց՝ ախտորոշման հիման վրա։
Հնարավորությունները[խմբագրել | խմբագրել կոդը]
DNA համակարգիչները հիմնականում նման են զուգահեռ համակարգիչներին, դրանում այն օգտագործում է ԴՆԹ-ի բազմաթիվ մոլեկուլների առավելությունները՝ փորձելու մի անգամից տարբեր հնարավորություններ։
DNA համակարգիչները նաև առաջարկում էներգիայի շատ ավելի քիչ ծախս, քան ավնդական սիլկոնային համակարգիչները։ ԴՆԹ-ն օգտագործում է ադենոզինի եռաֆոսֆատ (ԱԵՖ), որպես սնուցման նյութ կամ որպես ջերմային։
ԴՆԹ-ի թե հիբրիդացումը, և թե հիդրոլիզը կարող է ինքնաբերաբար առաջանալ, սնուցվելով ԴՆԹ-ում կուտակված պոտենցիալ էներգիայով։ Երկու ԱԵՖ մոլկուլների սպառումից ստացվում է 1.5*10-19 Ջ. Նույնիսկ շատ տրանզիստորներով՝ վայրկյանում 2 ԱԵՖ մոլեկուլ օգտագործելով, դուրս եկող հոսանքը էլի քիչ է։ Օրինակ, Քհանը հաղորդում է 109 փոխանցում վայրկյանում `10-10 էներգիայի ծախսով, իսկ Շապիրոն նմանապես հաղորդում է7.5*1011 ելք 4000 վայրկյանում ~10-10 Վ էներգիայի ծախսմամբ։
Հատուկ մասնագիտական պրոբլեմների համար, DNA համակարգիչները ավելի արագ են ու փոքր, քան ցանկացած այլ համակարգիչ։ Ավելին, որոշակի մաթեմատիկական հաշվարկներ աշխատում են DNA համակարգիչներով։ Որպես օրինակ, Արան նայեբին տրամադրել է Strassenի կաղապարային բազմացման ալգորիթմի ընդհանուր կիրառում DNAհամակարգչի վրա, չնայած խնդիրներ էին եղել մասծտաբավորման հետ։
Սակայն, DNA համակարգիչները չեն տրամադրում որևէ նոր հնարավորություն Հաշվարկողականության տեսություն տեսանկյունից, որի խնդիրների ուսումնասիրումը հաշվողապես լուծելի է` օգտագործելով հաշվարկման տարբեր մոդելներ։
Օրինակ,
Եթե խնդրի լուծման համր անհրաժեշտ տարածությունը աճում է էքսպոնոնտորեն համեմատական խնդրի չափսի հետ (EXPSPACE խնդիրներ) von Neumann սարքերի վրա, ապա այն էքսպոնենտորեն համեմատական աճում է խնդրի չափսի հետ նաև DNA համակարգիչների վրա։
Շատ մեծ EXPSPACE խնդիրների համար անհրաժեշտ ԴՆԹ-ի քանակը շատ մեծ է և ոչ պրակտիկ։
Մյուս կողմից, Քվանտային համակարգիչները տրամադրում են նոր հնարավորություններ։
DNA համակարգիչների տեխնոլոգիան նման է, բայց տարբերվում է ԴՆԹ նանոտեխնելոգիաներից։ Վերջինը օգտագործում է Վաթսոնի և Քրիկի հիմնական զուգադրման առանձնահատկությունները և ԴՆՈ-ի այլ հատկանիշներ ԴՆԹ-ից նոր կառույցներ ստանալու համար։ Այս կառույցները կարող են օգտագործվել DNA համակարգիչների համար, սակայն դա պարտադիր չէ։ Բացի այդ, DNA համարկիչներին հարկավոր չեն որևէ մոլեկուլներ ստացված ԴՆԹ տեխնոլիայով։
Caltech-ի ստեղծել ոն միացում պատրաստված 130 եզակի ԴՆԹ թելիկներից, որը կարող է հաշվել 1-15 թվերի քառակուսի արմատները։
Եղանակները[խմբագրել | խմբագրել կոդը]
Բազմաթիվ եղանակներ կան DNA համակարգիչներ հավաքելու. Ամեն մեկն ունի իր առավելություններն ու թերություները։ Սրանց մեծամասնությունը կառուցում է հիմնական տրամաբանական անցումները (AND, OR, NOT) կապված DNA հիմքի թվային տրամաբանության հետ։ Հիմքերից որոշները ներառում են ԴՆԹզիմներ,
դեօքսիօլիգոնուկլեոտիդներ, ֆերմենտներ, ԴՆԹ սալեր և պոլիմերազային շղթայական ռեակցիա
ԴՆԹզիմներ[խմբագրել | խմբագրել կոդը]
Կատալիտիկ ԴՆԹն (դեօքսիռիբոզիմկամ ԴՆԹզիմ) արագացնում է ռեակցիան համապատասխան նյութի հետ փոխազդելիս։ Այս ԴՆԹզիմները օգտագործվում են տրամաբանական անցումներ կառուցելու համար, ինչպես թվային տրամաբանություն սիլիկոնում, այնուամենայնիվ, ԴՆԹզիմները սահմանափակվում են 1-, 2- և 3- մուտքային անցումներով, առանց որևէ կոնկրետ մտադրության շարքը շարունակելու։
ԴՆԹզիմների տրամաբանական անցումը փոխում է իր կառուցվածքը, երբ միանում է համապատասխան օլիգոնուկլեոտիդի և ֆլուորոգենի սուբդտրատը, որին նա միացած է՝ ազատ է արձակվում։ Չնայած այլ նյութեր կարող են օգտագործվել, մոդելների մեծամասնությունը օգտագործում է լուսածորման վրա հիմնված սուբստրատը, քանզի այն հեշտ է հայտնաբերել, նույնիսկ եզակի մոլեկուլի սահմանում։
Լուսածորման քանակը, այնուհետև կարող է չափվել, պարզելու համար արդյոք ռեակցիա տեղի է ունեցել, թե ոչ։ Փոխված ԴՆԹզիմը օգտագործվում է (ծախսվում է) և չի կարող այլ ռեակցիաների մասնակցել։ Սրա պատճառով, այս ռեակցիան տեղի է ունենում այնպիսի սարքերում, ինչպիսին է շարունակական թափահարման - տանկի ռեակտորը, որտեղ վերացվում է հին նյութը և ավելանում են նոր մոլեկուլներ։
Երկու հաճախ օգտագործվող ԴՆԹզիմնեը կոչվում են E6 և 8-17։ Սրանք տարածված են, քանզի թույլ են տալիս բաժանել սուբստրատը ցանկացած կամյական տեղ։
Ստոյանովիչն ու ՄակԴոնալդը օգտագործել են E6 ԴՆԹզիմը սարքեր կառուցելու համար, նույնապես, Ստոյանովիչը նաև ցուցադրել է 8-17 ԴՆԹզիմներ օգտագործող տրամաբանական անցումներ։
Չնայած այդ ԴՆԹզիմները ապացուցել են իրենց օգտակարությունը տրամաբանական անցումներ կառուցելու գործում՝ նրանք սահմանափակված են կոֆակտոր մետաղի կարիքով՝ գործելու համար, ինչպես օրինակ Zn2+ կամ Mn2+, և հետևաբար օգտակար չեն։
See also[խմբագրել | խմբագրել կոդը]
- Biocomputers
- Computational gene
- Molecular electronics
- Peptide computing
- Parallel computing
- Quantum computing
- DNA code construction
- Wetware computer
References[խմբագրել | խմբագրել կոդը]
Further reading[խմբագրել | խմբագրել կոդը]
- Martyn Amos (June 2005)։ Theoretical and Experimental DNA Computation։ Springer։ ISBN 3-540-65773-8 (չաշխատող հղում) — The first general text to cover the whole field.
- Gheorge Paun, Grzegorz Rozenberg, Arto Salomaa (October 1998)։ DNA Computing - New Computing Paradigms։ Springer-Verlag։ ISBN 3-540-64196-3 — The book starts with an introduction to DNA-related matters, the basics of biochemistry and language and computation theory, and progresses to the advanced mathematical theory of DNA computing.
- JB. Waldner (January 2007)։ Nanocomputers and Swarm Intelligence։ ISTE։ էջ 189։ ISBN 2746215160
- Zoja Ignatova, Israel Martinez-Perez, Karl-Heinz Zimmermann (January 2008)։ DNA Computing Models։ Springer։ էջ 288։ ISBN 978-0-387-73635-8 — A new general text to cover the whole field.
Արտաքին հղումներ[խմբագրել | խմբագրել կոդը]
- «DNA computing: the future for Basel?»։ Արխիվացված է օրիգինալից 2008-08-28-ին։ Վերցված է 2021-01-24
- DNA modeled computing Archived 2019-02-18 at the Wayback Machine.
- How Stuff Works explanation
- Physics Web
- Ars Technica
- NY Times DNA Computer for detecting Cancer
- 0005BC6A-97DF-1446-951483414B7F0101 Bringing DNA computers to life, in Scientific American
- 197&catid= 1&limitstart= 177 Japanese Researchers store information in bacteria DNA(չաշխատող հղում)
- International Meeting on DNA Computing and Molecular Programming
- LiveScience.com-How DNA Could Power Computers
|