Գլոբալ դիրքորոշման համակարգ

Վիքիպեդիայից՝ ազատ հանրագիտարանից
1rightarrow.png  Տես նաև ԳԴՀ (այլ կիրառումներ) 
ԳԴՀ արբանյակի կոնցեպտ
ԳԴՀ ընդունիչ

Գլոբալ Դիրքորոշման Համակարգը (ԳԴՀ, անգլ.՝ GPS) միակ լիիրավ գործող Գլոբալ Նավիգացիոն Արբանյակային Համակարգն է, որը բաղկացած է 24 արբանյակներից, որոնք հեռարձակում են ճշգրիտ միկրոալիքային ազդանշաններ, հնարավորություն տալով ԳԴՀ ընդունիչներին որոշելու իրենց դիրքն, արագությունն, ուղղությունն և ժանանակը։ Այն ստեղծվել է Միացյալ Նահանգների Պաշտպանության նախարարության կողմից։ Նմանատիպ համակարգերից է նաև ռուսական GLONASS–ն, եվրոպական Galileo Դիրքորոշման Համակարգն, չինական COMPASS նավիգացիոն համակարգն և հնդկական IRNSS–ն։ Սակայն բոլոր վերոհիշյալները դեռ մշակման և ստուգման փուլերում են։

Սովորական ԳԴՀ ընդունիչը որոշում է իր դիրքն հիմնվելով չորս և ավելի ԳԴՀ արբանյակներից ստացված ազդանշանների վրա։ Այդ ստացված ինֆորմացիայի հիման վրա որոշվում են դիրքային պարամետրերը՝ x, y, z, և ժամանակը՝ t։ Յուրաքանչյուր ԳԴՀ արբանյակ ունի ատոմային ժամացույց և շարունակ հեռարձակում է հաղորդագրություններ, որոնք պարունակում են հաղորդագրության ուղարկման ժամանակն, հեռարձակող արբանյակի դիրքի հաշվման համար անհրաժեշտ պարամետրերը (էֆեմերիդ), և արբանյակների վիճակային պարամետրերը (ալմանաք)։ Ազդանշաններն փոխանցվում են լույսի արագությամբ մինչև երկրին հասնելը, և փոքր-ինչ ավելի դանդաղ մթնոլորտի միջով։ Ընդունիչը՝ օգտագործելով հաղորդագրության ստացման ժամանակը, հաշվում է իր հեռավորությունն յուրաքանչյուր արբանյակից, որից և այն որոշում է իր դիրքն։

Համակարգի Սեգմենտացիան[խմբագրել]

Համակարգի սեգմենտացիան

ԳԴՀ-ն կազմված է երեք հիմնական սեգմենտներից՝ տարածքային սեգմենտից (ՏՍ), կառավարման սեգմենտից (ԿՍ) և օգտագործողի սեգմենտից (ՕՍ)։ [1]

Տարածքային սեգմենտն իր մեջ ընդգրկում է ԳԴՀ արբանյակներին՝ թվով 24–ը, որոնք դասակարգված են 6 հատ հարթությունների վրա [2]։ Ուղեծրերը դասավորված են այնպես, որ երկրի կամայական կետից գրեթե միշտ հասանելի են 6 հատ արբանյակ [3]։ Գտնվելով 20.200կմ բարձրության վրա, յուրաքանչյուր արբանյակ մեկ աստղային օրվա ընթացքում կատարում է երկու լրիվ պտույտ [4]։

Կառավարման սեգմենտի մեջ մտնում են ԳԴՀ–ն վերահսկող երեք մոնիթորինգային կայաններն, որոնք պարբերաբար ուղարկում են նավարկման ճշտումներն արբանյակներին՝ ստեղծված Կալմանի ֆիլտրի կողմից, որն գեներացնում է դրանք, հիմնվելով մոնիթորինգային կայանների տվյալների, եղանակի տեսության և այլ տվյալների վրա [5][6]։

Օգտագործողի սեգմենտն իրենից ներկայացնում է ԳԴՀ ընդունիչ։ Հիմնականում ԳԴՀ ընդունիչները կազմված են ալեհավաքից՝ որն ծրագրված է ստանալու ԳԴՀ–ի կողմից հեռարձակվող ալիքները, պրոցեսորից և բավականին կայուն ժամացույցից (հիմնականում քվարցային)։

Դիրքի որոշումը[խմբագրել]

դիրքի որոշումը փսեվդոհեռավորությունների հիման վրա

ԳԴՀ ընդունիչները իրենց դիրքը որոշելու համար կատարում են բազմաթիվ բարդ մաթեմատիկական հաշվարկներ, սակայն ընդհանուր գաղափարը կայանում է հետևյալում. Սկզբում ընդունիչը գրանցում է արբանյակից եկած հաղորդագրության ստացման ժամանակը, որի միջոցով հաշվում է իր հեռավորությունն արբանյակից, այսպես կոչված փսեվդոհեռավորությունը [7]։

Այնուհետև նավարկման հաղորդագրությունից բեռնվում է ուղեծրային դիրքային տվյալը՝ էֆեմերիդը՝ արբանյակի ճշգրիտ դիրքը որոշելու համար։ Իմանալով արբանյակի դիրրքն ու հեռավորությունը դրանից նշանակում է, որ ընդունիչը գտնվում է մի գնդի մակերևույթի վրա, որի կենտրոնը հանդիսանում է արբանյակի դիրքն, իսկ շառավիղը՝ հեռավորությունն արբանյակից։

Այն բանից հետո, երբ որոշվել են չորս արբանյակներից փսեվդոտարածությունները, կատարվում է ընդունիչի դիրքի որոշման առաջին կանխատեսումն՝ հիմնված այն գաղափարի վրա, որ բոլոր փսեվդո–տարածությունները պետք է հատվեն մի կետում։

Բաժանելով լույսի արագությամբ այն հեռավորությունը, որով շեղելիս բոլոր փսեվդոտարածությունները կմոտենան իրար բավականին մոտիկ, որ կհատվեն մի կետում, կստանանք ընդունիչի ժամանակի շեղումը։ Կատարելով նույն գործողությունն հասանելի այլ արբանյակների քառյակի հետ, ընդունիչը որոշում է, թե ստացված ո՞ր տվյալն օգտագործել։ Այս գործողության արդյունքում որոշվում է ընդունիչի դիրքն ու ժամանակը։

Ճշտությունն ու սխալանքի աղբյուրները[խմբագրել]

Ինչպես արդեն նշվել է, ԳԴՀ ընդունիչը իր դիրքն որոշելու համար օգտագործում է իր ժամանակն, արբանյակի դիրքն ու ստացված ազդանշանի տեղ հասնելու տևողությունն, ինչն է նշանակում է, որ դիրքի ճշտությունն հիմնականում կախված է արբանյակի դիրքի և ազդանշանի ուշացման հետ։

Ուշացումը չափելու համար, ընդունիչը համեմատում է ստացված ազդանշանը իր ներքին գեներացված տարբերակի հետ, որի արդյունքում ժամանակակից ընդունիչները կարող են ապահովել մինչև 10 նանովայրկյան ճշտություն։ Քանզի ԳԴՀ ազդանշանները տարածվում են լույսի արագությամբ, սխալանքը կարող է կազմել մինչև 3 մետր։

Դիրքի ճշտությունն կարող է լավացվել օգտագործելով ռազմական նպատակների համար հեռարձակվող P(Y) ազդանշանը, որի դեպքում կստանանք մինչև 30 սմ. Ճշտություն։

Բացի վերը նշվածից, կան շատ այլ սխալանքի աղբյուրներ, որոնց արդյունքում հասարակ ԳԴՀ ընդունիչի սխալանքը կազմում է մոտավորապես 15 մ.։ Ստորև բերված են աղբյուրներն իրենց ազդեցությամբ դիրքի ճշտության վրա.

Աղբյուր Ազդեցություն
իոնոսֆերիք ազդեցություններ ±5 մետր
էֆեմերիդի սխալանք ±2.5 մետր
արբանյակի ժամացույցի սխալանք ± 2 մետր
բազմակի ճանապարհների սխալանք ± 1 մետր
տրոպոսֆերիք ազդեցություններ ± 0.5 մետր
թվային սխալանք ± 1 մետր

Ճշտության մեծացման «հավելման» եղանակը[խմբագրել]

«Հավելման» մեթոդները հիմնված են արտաքին ինֆորմացիայի վրա, որն օգտագործվում է վերջնական դիրքի հաշվման ժամանակ։ Որպես կանոն ստեղծվում են վերգետնյա կայաններ, որոնք ինչ–որ հաճախականությամբ հեռարձակում են իոնոսֆերիք, էֆեմերիդի և ժամանակային սխալանքներն, որոնք ստանալով ընդունիչը կատարում է համապատասխան ուղղումներ՝ հասցնելով վերջնական դիրքի ճշտությունը 2-3 մետրի։

ԳԴՀ ընդունիչներ[խմբագրել]

ԳԴՀ ընդունիչների հիմնական խնդիրն է ստանալ ԳԴՀ արբանյակներից ազդանշանները և մշակել դրանք՝ ընդունիչի դիրքն, արագությունն և շարժման ուղղությունը որոշելու համար։

Դրանք կազմված են ալեհավաքից՝ որն ծրագրված է ստանալու ԳԴՀ–ի կողմից հեռարձակվող ալիքները, պրոցեսորներից՝ ինֆորմացիայի մշակման համար, քվարցային ժամացույցից։ Ընդունիչները նաև նկարագրվում են տարողության քանակով, որն ցույց է տալիս, թե քանի արբանյակներից ազդանշաններ ընդունիչը կարող է միաժամանակ ստանալ և մշակել։ Ժամանակակից ընդունիչները զինված են SiRF Star II և SiRF Star III ԳԴՀ մոդուլներով, որոնց տարողությունը համապատասխանաբար 12 և 20 է։

MC5 և Step III ընդունիչները[խմբագրել]

Այս ընդունիչները նախատեսված են ավտոմեքենաների համար։ Աշխատացնելու համար հարկավոր է միացնել սարքը ավտոմեքենայի հոսանքի աղբյուրին, այնուհետև բորտային համակարգչին՝ ավտոմեքենայի վիճակային պարամետրերի մասին ինֆորմացիա ստանալու համար, միացնել երկու ալեհավաք՝ ԳԴՀ–ի և ԳՇՀ–ի համար և տեղադրել SIM քարտ։

Այս սարքերն իրենց մեջ ունեն արդեն մշակված տրամաբանություն, որն էլ և մշակում է ԳԴՀ–ից և բորտ համակարգչից եկած տվյալներն և GPRS–ով փոխանցում դրանք վեբ սերվերին։ ԳՇՀ ցանցի բացակայության դեպքում տեղի է ունենում ինֆորմացիայի բուֆերիզացիա, որը ցանցի առկայության դեպքում ամբողջությանբ ուղարկվում է սերվերին՝ ապահովելով համակարգի անխափանությունը։

MC5 և Step III ընդունիչների վիճակային պարամետրերից են շարժման ազդանշանը, բենզինի, յուղի ու ջրի ցուցմունքները, շարժիչի աշխատանքային վիճակը և շատ այլ պարամետրեր։

WebTrac 4 ընդունիչը[խմբագրել]

Այս ընդունիչը նախատեսված են մարդկանց համար։ Աշխատացնելու համար բավական է տեղադրել SIM քարտ և սեղմել միացման կոճակը։

Սարքը հնարավորություն է տալիս որոշել երկու փոխանցման ծառայություններից որևէ մեկը՝ GPRS կամ SMS, ինչպես նաև կարող է ուղարկել հատուկ ազդանշաններ որոշակի պայմանների դեպքում, օրինակ՝ երբ մարդը սեղմում է կարմիր կոճակը։

Գրականություն[խմբագրել]