Օղակ (մաթեմատիկա)
Անվան այլ կիրառումների համար տե՛ս՝ Օղակ (այլ կիրառումներ)
![]() |
Այս հոդվածը կարող է վիքիֆիկացման կարիք ունենալ Վիքիպեդիայի որակի չափանիշներին համապատասխանելու համար։ Դուք կարող եք օգնել հոդվածի բարելավմանը՝ ավելացնելով համապատասխան ներքին հղումներ և շտկելով բաժինների դասավորությունը, ինչպես նաև վիքիչափանիշներին համապատասխան այլ գործողություններ կատարելով։ |
Դիցուք բազմության վրա տրված են երկու գործողություն, որոնցից առաջինը անվանենք "գումարում", իսկ երկրորդը՝ "բազմապատկում"։
Համապատասխանաբար օգտվենք " + " և " " նշաններից։
Սահմանում[խմբագրել | խմբագրել կոդը]
համակարգը կոչվում է օղակ, եթե՝
1. համակարգը տեղափոխելի խումբ է։
2. =
3․ = + և = +
Եթե - ի բոլոր տարրերի համար տեղի ունի նաև = պայմանը, ապա օղակը կոչվում է տեղափոխելի(Աբելյան)։
Եթե , ապա օղակը կոչվում է միավորով, ֊ն էլ՝ նրա միավորը։
Դաշտ[խմբագրել | խմբագրել կոդը]
Տեղափոխելի օղակը կոչվում է դաշտ, եթե ցանկացած ոչ զրոական տարր ունի հակադարձ ըստ բազմապատկման, այսինքն՝
- = = :
Դրույթներ[խմբագրել | խմբագրել կոդը]
Առանց ապացույցի բերենք որոշ հայտնի դրույթներ՝ օղակների և դաշտերի վերաբերյալ՝[1]
ա) P օղակում a+x=0 հավասարումն ունի միակ լուծում, անկախ a-ի ընտրությունից։ Այն նշանակվում է 0 և կոչվում է զրոյական տարր (սակայն այն տեղին չէ նույնացնել 0 թվի հետ)։
բ) Եթե P օղակի մի կամ մի քանի տարրերի արտադրյալի մեջ գոնե մի արտադրիչը 0 է, ապա այդ արտադրյալը հավասար է զրոյի։ Այնինչ՝ հակառակ պնդումն, ընդհանրապես ասած, ճիշտ չէ, այսինքն՝ հնարավոր է, որ a≠0 և b≠0, բայց՝ ab=0։ այս պարագայում a, b P տարրերը կոչվում են զրոյի բաժանարարներ։
Ծանոթագրություններ[խմբագրել | խմբագրել կոդը]
- ↑ Գ.Ա.Ղարագեբակյան` Թվերի տեսության դասընթաց։ Երևան 2008 թ.
|