Մոնտե-Կարլոյի մեթոդ

Վիքիպեդիայից՝ ազատ հանրագիտարանից
Jump to navigation Jump to search

Մոնտե-Կարլոյի մեթոդ, վիճակագրական փորձարկումների մեթոդ, հաշվողական մաթեմատիկայի մեթոդ, որը հենվում է պատահական մեծությունների և պրոցեսների մոդելավորման և փնտրվող մեծությունների վիճակագրական գնահատականների կառուցման վրա։ Մոնտե-Կարլոյի մեթոդի կիրառման առաջին և պարզագույն դեպքը л թվի մոտավոր հաշվումն է (Բյուֆֆոն, 1777)։ Ընդունված է, որ Մոնտե-Կարլոյի մեթոդը սկզբնավորվել է 1944 թվականին՝ ատոմային ռեակտորների, ինչպես նաև ատոմային ռումբի ստեղծման աշխատանքների մաթեմատիկական ապահովման կապակցությամբ (Զ․ Նեյման, Ս․ Ուլամ, է․ Ֆերմի)։ Մոնտե-Կարլոյի մեթոդը բուռն թափով սկսեց զարգանալ էլեկտրոնային հաշվողական մեքենաների (ԷՀՄ) երևան գալուց հետո և սկզբում կիրառվում էր ճառագայթման տեղափոխման ու նեյտրոնային ֆիզիկայի բարդ խնդիրների (որոնց նկատմամբ դասական թվային մեթոդները կիրառելի չէին) լուծման համար։ Այնուհետև այն սկսեց կիրառվել նաև խաղերի տեսության, մասսայական սպասարկման և այլ խնդիրների լուծման համար։ Խնդիրը Մոնտե-Կարլոյի մեթոդով լուծելու համար նախ կառուցում են խնդրի հավանականական մոդելը՝ ներկայացնում են որոնվող մեծությունները, օրինակ՝ բազմաչափ ինտեգրալը, պատահական պրոցեսի ֆունկցիոնալի մաթեմատիկայի սպասման տեսքով, որը հետագայում մոդելավորում են ԷՀՄ-ով։ Լավ հայտնի են նաև 2 սեռի ինտեգրալ հավասարումների, հանրահաշվական հավասարումների, էլիպսական եզրային խնդիրների լուծման, օպերատորների սեփական արժեքների գնահատման հավանականական մոդելները։

Այս հոդվածի կամ նրա բաժնի որոշակի հատվածի սկզբնական կամ ներկայիս տարբերակը վերցված է Քրիեյթիվ Քոմմոնս Նշում–Համանման տարածում 3.0 (Creative Commons BY-SA 3.0) ազատ թույլատրագրով թողարկված Հայկական սովետական հանրագիտարանից  (հ․ 8, էջ 16 CC-BY-SA-icon-80x15.png