Գրաֆներ

Վիքիպեդիայից՝ ազատ հանրագիտարանից

Մաթեմատիկայում գրաֆը մի շարք օբյեկտների վերացական ներկայացումն է, որտեղ մի քանի զույգ օբյեկտներ կապված են հղումներով։ Փոխկապակցված օբյեկտները ներկայացվում են մաթեմատիկական աբստրակցիաների միջոցով, որոնք կոչվում են գագաթներ և կողեր։ Սխեմատիկ տեսքով գրաֆը կարելի է պատկերել որպես մի շարք կետերի (dots) և դրանք միացնող գծերի կամ կորեր միջոցով։ Գրաֆերն մեկն են այն օբյեկտներից, որոնք ուսումնասիրվում են Դիսկրետ մաթեմատիկա բաժնում։

Գրաֆի կողերը կարող են լինել ուղղորդված (ասիմետրիկ) կամ ոչ-ուղղորդված (սիմետրիկ)։ Օրինակ, եթե որպես գրաֆի գագաթներ համարենք երեկույթին մասնակցող մարդկանց, և ասենք գագաթների միջև գոյություն ունի կող, եթե կա ձեռք-սեղմում, ապա սա ոչ-ուղղորդված գրաֆի օրինակ է, որովհետև եթե մարդկանցից մեկը սեղմեց մյուսի ձեռքը, ապա երկրորդ անձն էլ սեղմեց առաջինի ձեռքը։ Մյուս կողմից, եթե գագաթները ներկայացնող մարդկանց միջև հարաբերությունը սահմանենք որպես Ա մարդը ծանոթ է Բ անձի հետ, ապա այս ձևով սահմանված գրաֆը կլինի ուղղորդված, քանի որ երբ Ա անձը ճանաչում է Բ մարդուն, ապա այստեղից չի հետևում, որ Բ մարդն էլ է ճանաչում Ա մարդուն։

Գրաֆը Գրաֆների տեսություն բաժնի հիմնական ուսումնասիրվող թեման է։

Սահմանումներ[խմբագրել]

Գրաֆ[խմբագրել]

Գաղափարապես գրաֆը ձևավորվում է գագաթներով և դրանք միացնող կողերով։

Օրինակ 1. SimpleGraf.jpg

Ֆորմալ գրաֆը բազմությունների զույգ է՝ (V,E), որտեղ V-ն գագաթների բազմությունն է և E-ն կողերի բազմությունն է, որոնք ձևավորվում են գագաթների զույգով։ E-ն մուլտիբազմություն է, այսինքն՝ նրա էլէմենտները կարող են հանդիպել ավելի քան մեկ անգամ։ Գրաֆի գագաթները կարող ենք նշանակել լատինական այբուբենի տառերով։ Մեր օրինակում կնշանակենք հետևյալ կերպ՝ v1,v2,...vn : Ելնելով նախորդ օրինակից մեր գրաֆը կունենա հետևյալ տեսքը՝

Օրինակ 2. GrafWithVertices.jpg

Նմանակերպ մենք կարող ենք նշանակել գրաֆի կողերը լատինական այբուբենի տառերով՝ e1,e2,...en:

Օրինակ 3. GrafWithVerticesEdges.jpg

Գրաֆների ներկայացումը[խմբագրել]

Հարևանության հարաբերություն[խմբագրել]

Գրաֆի ներկայացումը հարևանության մատրիցի միջոցով G=(V,E) գրաֆի հարևանության մատրիցը nxn չափանի մատրից է՝ D=(dij), որտեղ n-ը G գրաֆի գագաթների քանակն է՝ V={v1,v2,....vn} և dij vi և vj գագաթների միջև կողերի քանակը։ Մասնավորապես dij=0, երբ vi և vj գագաթների միջև կող գոյություն չունի։

Օրինակ 1՝ AdjacencyMatrix.jpg

Ոչ ուղղորդված գրաֆի D մատրիցը սիմետրիկ է այսինքն՝ DT = D: Ակնհայտ է, որ հարևանության մատրիցը որոշում է գրաֆն ամբողջությամբ։

G ուղղորդված գրաֆի հարևանության մատրիցը՝ D=(dij) մատրիցն է, որտեղ dij այն ուղղորդված կողերի քանակն է, որոնք դուրս են գալիս vi գագաթից և գնում են դեպի vj գագաթը։

Օրինակ2՝ AdjacencyMatrixDirected.jpg

Կցության հարաբերություն[խմբագրել]

Կցության ցուցակ
Կողերը ներկայացվում են մասիվով, որը պարունակում է գագաթների զույգերը , կշիռը և այլ տվյալներ։
Կցության մատրից
Գրաֆը ներկայացվում է m × n մատրիցով, որտեղ m-ը գագաթների քանակն է, n-ը կողերի։ Մատրիցի տարրը [գագաթ, կող] պարունակում է կողի վերջնական տվյալը (պարզագույն դեպք։ 1 - կից է , 0 - կից չէ)։

Գրաֆի լրացում գրաֆ[խմբագրել]

G=(V,E) գրաֆի լրացում կանվանենք ┌G(V,┌E), որտեղ ┌E-ն այն կողերի բազմությունն է, որոնք առկա չեն G գրաֆում։

Օրինակ 1.

Complementgraf.jpg