Վեկտորական տարածություն

Վիքիպեդիայից՝ ազատ հանրագիտարանից

Գծային կամ վեկտորական տարածությունը հանդիսանում է գծային հանրահաշվի հիմնական ուսումնասիրման առարկան։

Սահմանում[խմբագրել | խմբագրել կոդը]

էլեմենտների բազմությունը կոչվում է գծային տարածություն, եթե տեղի ունեն հետևյալ պնդումները`

  1. համապատասխանության մեջ է դրած ինչ-որ , որը կոչվում է գումար` ,
  2. իրական թվին և համապատասխանության մեջ է դրած , որը կոչվում է արտադրյալ։

Հատկություններ[խմբագրել | խմբագրել կոդը]

Վերոհիշյալ գործողությունները` գումարումը և բազմապատկումը, բավարարում են հետևյալ ութ աքսիոմներին`

  1. , գումարումը կոմուտատիվ է
  2. , գումարումը ասոցիատիվ է
  3. գոյություն ունի տարածության մեջ զրոյական էլեմենտ, այնպիսին որ, ճիշտ է
  4. կամայական էլեմենտի ունի իր հակադիրը`
  5. գոյություն ունի միավոր`
  6. , որտեղ իրական թվեր են
  7. , որտեղ իրական թվեր են

Գծային տարածության բազիս և չափողականություն[խմբագրել | խմբագրել կոդը]

գծային տարածության էլեմենտները կոչվում են գծորեն կախված, եթե գոյություն ունեն այնպիսին, որ միաժամանակ զերո չեն և :

գծային տարածության էլեմենտները կոչվում են գծորեն անկախ, եթե գոյություն չունեն նման սկալյարներ, այսինքն այդ համախմբից չկա այնպիսին, որը կարտահայտվի մյուսների գծային կոմբինացիաով։

Եթե էլեմենտների համախումբը պարունակում է զրոյական էլեմենտը, հետևաբար դրանք գծորեն կախված են։ գծային տարածության համախումբը կոչվում է բազիս այդ տարածության մեջ, եթե դրանք գծորեն անկախ են և այդ տարածության կամայական էլեմենտի համար գոյություն ունեն այնպիսի սկալյարներ, որ