«Ատոմ»–ի խմբագրումների տարբերություն

Վիքիպեդիայից՝ ազատ հանրագիտարանից
Content deleted Content added
չ Բոտ: կոսմետիկ փոփոխություններ
չNo edit summary
Տող 1. Տող 1.
{{արևմտահայերեն|Հիւլէ}}
{{արևմտահայերեն|Հիւլէ}}
{{Տեղեկաքարտ Տարրական մասնիկ}}
{{Տեղեկաքարտ Տարրական մասնիկ}}
'''Ատոմը''' (հին հունարեն ''ἄτομος'' — ''անտրոհելի'') էլեկտրականապես չեզոք նյութի մասնիկ է, որը կազմված է դրական [[էլեկտրական լիցք|լիցք]] ունեցող միջուկից և բացասական [[էլեկտրոն]]ային ամպից։ [[Քիմիական տարրեր|Քիմիական տարրի]] նվազագույն մասնիկն է. հանդիսանում է նրա քիմիական հատկությունների կրողը։ Էլեկտրոնային ամպը միջուկի շուրջ պահվում է [[Էլեկտրամագնիսականություն|էլեկտրամագնիսական ուժերի]] հաշվին։ Տարբեր տեսակի և թվով ատոմները, կապվելով միջատոմային կապերով, կազմում են մոլեկուլ։


'''Ատոմ''', քիմիական տարրերի հատկություններ ունեցող սովորական նյութի ամենափոքր բաղադրիչ մասը։ Ցանկացած [[պինդ մարմին]], [[հեղուկ]], [[գազ]] կամ [[Պլազմա (ֆիզիկա)|պլազմա]] կազմված է չեզոք կամ [[Իոնացում|իոնացված]] ատոմներից։ Ատոմները շատ փոքր են. սովորաբար մոտ 100 [[պիկոմետր]] (մեկ մետրի տասը միլիարդերորդը)։
Ատոմի միջուկը կազմված է դրական լիցքով [[պրոտոն]]ներից և չեզոք [[նեյտրոն]]ներից (միակ բացառությունն է, [[ջրածին|ջրածնի]] ատոմը, որը նեյտրոններ չպարունակող միակ կայուն միջուկն է։ Եթե պրոտոնների քանակը միջուկում համապատասխանում է էլեկտրոնների քանակին, ապա ատոմը էլեկտրականապես չեզոք է։ Հակառակ դեպքում ատոմն ունի որոշակի՝ դրական կամ բացասական լիցք և կոչվում է [[իոն]]։
Ատոմները դասակարգվում են ըստ միջուկում պրոտոնների և նեյտրոնների թվի։ [[Ատոմական թիվ|Պրոտոնների թվով]] որոշվում է ատոմի պատկանելիությունը քիմիական տարրին, իսկ նեյտրոնների թվով՝ քիմիական տարրի [[իզոտոպ]]ին<ref>{{cite book
| editor=Leigh, G. J. | year=1990
| title=International Union of Pure and Applied Chemistry, Commission on the Nomenclature of Inorganic Chemistry, [[Nomenclature of Organic Chemistry]] - Recommendations 1990
| publisher=Blackwell Scientific Publications
| isbn=0-08-022369-9 | page=35
| location=Oxford
| quote=An atom is the smallest unit quantity of an element that is capable of existence whether alone or in chemical combination with other atoms of the same or other elements.
}}</ref>։


[[Դը Բրոյլի ալիք|Փոքր չափերի]] պատճառով ատոմների վաքագծի վերաբերյալ դասական ֆիզիկայի կանխատեսումները նկատելիորեն սխալ են, ինչը պայմանավորված է [[Քվանտային մեխանիկա|քվանտային էֆեկտներով]]։ Ֆիզիկայի զարգմացման ընթացքում ատոմային մոդելները հիմնվել են քվանտային սկզբունքների վրա՝ ատոմը վարքագիծն ավելի լավ կանխատեսելու և բացատրելու համար։
Ժամանակակից ատոմի մոդելը նկարագրել է [[Էռնեստ Ռեզերֆորդ]]ը։

Ցանկացած ատոմ կազմված է մեկ [[Միջուկ (ատոմ)|միջուկից]] և մեկ կամ ավելի [[էլեկտրոն]]ներից։ Միջուկը կառուցված է մեկ կավ ավել պրոտոններից և սովորաբար գրեթե նույն քանակությամբ [[նեյտրոն]]ներից։ Պրոտոններն ու նեյտրոնները կոչվում են [[նուկլոն]]ները։ Ատոմի զանգվածի ավելի քան 99.94%-ը միջուկն է։ Պրոտոններն ունեն դրական, էլեկտրոնները՝ բացասական, իսկ նեյտրոնները՝ չեզոք [[էլեկտրական լիցք]]։ Եթե ատոմում էլեկտրոնների և պրոտոնների թիվը հավասար է, ուրեմն այն էլեկտրականապես չեզոք է։ Եթե ատոմում պրոտոնների համեմատ կան ավել կամ պակաս էլեկտրոններ, ուրեմն այն համապատասխանաբար բացասական կամ դրական լիցք ունի և կոչվում է [[իոն]]։

Ատոմում էլեկտրոնները միջուկի հետ կապված են [[էլեկտրամագնիսականություն|էլեկտրամագնիսական]] ուժի միջոցով։ Պրոտոնները և նեյտրոնները միջուկում կապված են [[միջուկային ուժեր]]ով, որոնք սովորաբար ավելի ուժեղ են էլեկտրամագնիսական ուժերից և չեզոքացնում են դրական լիցք ունեցող պրոտոնների միջև եղած վանող ուժերին։ Որոշակի պայմաններում վանող էլեկտրամագնիսական ուժը կարող է միջուկային ուժերից ուժեղ դառնալ, ինչի հետևանքով միջուկից կարող են նուկլոններ հեռանալ (այս [[Ռադիոակտիվություն|միջուկային տրոհման]] արդյունքում առաջանում է այլ քիմիական տարր)։

Ատոմում պրոտոնների քանակով է պայմանավորված թե ինչ քիմիական տարրի ատոմ է այն. օրինակ՝ [[պղինձ|պղնձի]] բոլոր ատոմները ունեն 29 պրոտոն, իսկ նեյտրոնների թվով պայմանավորված թե քիմիական տարիի որ իզոտոպից է ատոմը։ Էլեկտրոնների քանակը ազդեցություն ունի ատոմի էլեկտրամագնիսական հատկությունների վրա։ [[Քիմիական կապ]]երի միջոցով ատոմները կարող են [[քիմիական միացություններ]] կազմել, ինչպես օրինակ [[մոլեկուլ]]ները։

== Ատոմային տեսության պատմություն ==
=== Ատոմները փիլիսոփայությունում ===
{{հիմնական|ատոմիզմ}}
Այն միտքը, որ նյութը կազմած է դիսկրետ միավորներից հանդիպում է բազմաթիվ անտիկ մշակույթներում, ինչպես օրինակ՝ Հնդկաստանում և Հունաստանում։ «Ատոմ» անվանումը տրվել է հին հույն փիլիսոփաների կողմից։ Սակայն, այս գաղափաները հիմնված էին փիլիսոփայական և աստվածաբանական հիմնավորումների վրա, ոչ թե ապացույցների և փորձերի։ Այդ պատճառով ատոմի կառուցվածքի և վարքագծի մասին նրանց պատկերացումները սխալ էին։ Նրանք նաև չէին կարող համոզել, այսպիսով ատոմիզմը նյութի բնույթի վերաբերյալ բազմաթիվ տեսություններից մեկն էր։ Միայն 19-րդ դարում ատոմի գաղափարը ընդունվեց գիտնականների կողմից, երբ քիմիայում արվեցին այնպիսի հայտնագորցություններ, որոնք միայն կարող էին բացատրվել ատոմի գոյությամբ։

===Ապացույցի վրա հիմնված առաջին տեսություն===
[[File:Daltons symbols.gif|right|thumb|

Various atoms and molecules as depicted in [[Ջոն Դալթոն]]'s ''A New System of Chemical Philosophy'' (1808).]]
1800-ական թվականների սկզբին [[Ջոն Դալթոն]]ը ատոմի գաղափարի միջոցով է բացատրել այն, որ [[Քիմիական տարրեր|տարրերը]] միշտ փոխազդում են փոքր ամբողջ թվերի հարաբերությամբ։՚ Օրինակ՝ գոյություն ունի երկու անագի օքսիդ. մեկը՝ 88.1% անագ, 11.9% թթվածին, երկրորդը՝ 78.7% անագ, 21.3% թթվածին (համապատասխանաբար [[անագի օքսիդ(II)]] և [[անագի օքսիդ(IV)]])։ Սա նշանակում է, որ 100 գրամ միայն կարող է միանալ 13.5 կամ 27 գրամ թթվածնի հետ։ 13.5-ը և 27-ը կազմում եմ 1:2 հարաբերություն։ Այս փաստից ելնելով Դալթոնը եզրակացրեց, որ տարրերը փոխազդում են դիսկրետ միավորների (այլ կերպ ասած՝ ատոմների) ամբողջ թվի բազմապատիկներով։ Անագի օքսիդի պարագայում մեկ անագի ատոմը կարող է միանալ կամ մեկ, կամ երկու թթվածնի ատոմի հետ։<ref name="From AtomosToAtom">{{cite book|author=Andrew G. van Melsen |year=1952 |title=From Atomos to Atom |isbn= 0-486-49584-1 |publisher=Dover Publications |location=Mineola, N.Y.}}</ref>

Դալթոնը նաև հավատում էր, որ ատոմի տեսությունը կարող է բացատրել, թե ինչու է ջուրը տարբեր գազեր տարբեր հարաբերությամբ կլանում։ Օրինակ՝ նա գտավ, որ ջուրը [[ածխաթթու գազ]] շատ ավելի լավ է կլանում, քան [[ազոտ]]։<ref name = "Dalton_1803_paper">Dalton, John. "[http://web.lemoyne.edu/~GIUNTA/dalton52.html On the Absorption of Gases by Water and Other Liquids]", in ''Memoirs of the Literary and Philosophical Society of Manchester''. 1803. Retrieved on August 29, 2007.</ref> Դալթոնը կարծում էր, որ սա կապված է գազերի համապատասխան մասնիկների զանգվածների և դասավորության տարբերությունների հետ (ածխաթթու գազի մոլեկուլը (CO<sub>2</sub>) շատ ավելի մեծ և ծանր է ազոտի մոլեկուլից (N<sub>2</sub>))։

=== Բրոունյան շարժում ===
1827 թվականին [[Բուսաբանություն|բուսաբան]] [[Ռոբերտ Բրոուն]]ը ջրի մեջ ծաղկափոշու շարժը մանրադիտոկով ուսումնասիրելիս հայտնաբերեց, որ նրանք շարժվում են անկոնոն, այ երևույթը այժմ կոչվում է «[[Բրոունյան շարժում]]»։ Ենթադրվում էր, որ սրա պատճառը ջրի մոլեկուլների շարժն է։ 1905 թվականին [[Ալբերտ Այնշտայն]]ը ապացուցեց այս մոլեկուլների և նրանց շարժման գոյությունը՝ բրոունյան շարժման առաջին վիճակագրական վերլուծությամբ։<ref name=adp322_8_549/><ref>{{cite book
|last=Mazo|first=Robert M.|year=2002
|title=Brownian Motion: Fluctuations, Dynamics, and Applications
|publisher=Oxford University Press|isbn=0-19-851567-7
|oclc=48753074|pages=1–7}}
</ref><ref name=lee_hoon1995/> Ֆրանսիացի ֆիզիկոս [[Ժան Բատիստ Պերրեն]]ը օգտագործել է Այնշտայնի աշխատանքները՝ ատոմների զանգվածն ու չափերը փորձնականորեն որոշելու համար։<ref name=e31_2_50/>


== Ատոմի միջուկի կառուցվածք ==
== Ատոմի միջուկի կառուցվածք ==
Տող 36. Տող 54.


== Ծանոթագրություններ ==
== Ծանոթագրություններ ==
{{Reflist}}
{{Reflist|refs=
<ref name=adp322_8_549>{{cite journal|last=Einstein|first=Albert|year=1905|title=Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen|journal=[[Annalen der Physik]]|volume=322|issue=8|pages=549–560|language=German|url=http://www.zbp.univie.ac.at/dokumente/einstein2.pdf|format=PDF|doi=10.1002/andp.19053220806|accessdate=4 February 2007|bibcode = 1905AnP...322..549E }}</ref>

<ref name=lee_hoon1995>{{cite web|last=Lee|first=Y.K.|year=1995|author2=Hoon, K.|title=Brownian Motion|url=http://www.doc.ic.ac.uk/~nd/surprise_95/journal/vol4/ykl/report.html|publisher=[[Imperial College]]|accessdate=18 December 2007| archiveurl= https://web.archive.org/web/20071218061408/http://www.doc.ic.ac.uk/~nd/surprise_95/journal/vol4/ykl/report.html| archivedate= 18 December 2007 <!--DASHBot-->| deadurl= no}}</ref>

<ref name=e31_2_50>{{cite journal|last=Patterson|first=G.|year=2007 |title=Jean Perrin and the triumph of the atomic doctrine|journal=[[Endeavour (journal)|Endeavour]]|volume=31|issue=2|pages=50–53|doi=10.1016/j.endeavour.2007.05.003|pmid=17602746}}</ref>
}}


{{մասնիկներ}}
{{մասնիկներ}}

20:29, 24 Հուլիսի 2017-ի տարբերակ

Ատոմ
Ենթադասchemical entity?[1] և բաղադրյալ մասնիկ
Դյուի տասնորդական դասակարգում539.7
 Atoms Վիքիպահեստում


Ատոմ, քիմիական տարրերի հատկություններ ունեցող սովորական նյութի ամենափոքր բաղադրիչ մասը։ Ցանկացած պինդ մարմին, հեղուկ, գազ կամ պլազմա կազմված է չեզոք կամ իոնացված ատոմներից։ Ատոմները շատ փոքր են. սովորաբար մոտ 100 պիկոմետր (մեկ մետրի տասը միլիարդերորդը)։

Փոքր չափերի պատճառով ատոմների վաքագծի վերաբերյալ դասական ֆիզիկայի կանխատեսումները նկատելիորեն սխալ են, ինչը պայմանավորված է քվանտային էֆեկտներով։ Ֆիզիկայի զարգմացման ընթացքում ատոմային մոդելները հիմնվել են քվանտային սկզբունքների վրա՝ ատոմը վարքագիծն ավելի լավ կանխատեսելու և բացատրելու համար։

Ցանկացած ատոմ կազմված է մեկ միջուկից և մեկ կամ ավելի էլեկտրոններից։ Միջուկը կառուցված է մեկ կավ ավել պրոտոններից և սովորաբար գրեթե նույն քանակությամբ նեյտրոններից։ Պրոտոններն ու նեյտրոնները կոչվում են նուկլոնները։ Ատոմի զանգվածի ավելի քան 99.94%-ը միջուկն է։ Պրոտոններն ունեն դրական, էլեկտրոնները՝ բացասական, իսկ նեյտրոնները՝ չեզոք էլեկտրական լիցք։ Եթե ատոմում էլեկտրոնների և պրոտոնների թիվը հավասար է, ուրեմն այն էլեկտրականապես չեզոք է։ Եթե ատոմում պրոտոնների համեմատ կան ավել կամ պակաս էլեկտրոններ, ուրեմն այն համապատասխանաբար բացասական կամ դրական լիցք ունի և կոչվում է իոն։

Ատոմում էլեկտրոնները միջուկի հետ կապված են էլեկտրամագնիսական ուժի միջոցով։ Պրոտոնները և նեյտրոնները միջուկում կապված են միջուկային ուժերով, որոնք սովորաբար ավելի ուժեղ են էլեկտրամագնիսական ուժերից և չեզոքացնում են դրական լիցք ունեցող պրոտոնների միջև եղած վանող ուժերին։ Որոշակի պայմաններում վանող էլեկտրամագնիսական ուժը կարող է միջուկային ուժերից ուժեղ դառնալ, ինչի հետևանքով միջուկից կարող են նուկլոններ հեռանալ (այս միջուկային տրոհման արդյունքում առաջանում է այլ քիմիական տարր)։

Ատոմում պրոտոնների քանակով է պայմանավորված թե ինչ քիմիական տարրի ատոմ է այն. օրինակ՝ պղնձի բոլոր ատոմները ունեն 29 պրոտոն, իսկ նեյտրոնների թվով պայմանավորված թե քիմիական տարիի որ իզոտոպից է ատոմը։ Էլեկտրոնների քանակը ազդեցություն ունի ատոմի էլեկտրամագնիսական հատկությունների վրա։ Քիմիական կապերի միջոցով ատոմները կարող են քիմիական միացություններ կազմել, ինչպես օրինակ մոլեկուլները։

Ատոմային տեսության պատմություն

Ատոմները փիլիսոփայությունում

Այն միտքը, որ նյութը կազմած է դիսկրետ միավորներից հանդիպում է բազմաթիվ անտիկ մշակույթներում, ինչպես օրինակ՝ Հնդկաստանում և Հունաստանում։ «Ատոմ» անվանումը տրվել է հին հույն փիլիսոփաների կողմից։ Սակայն, այս գաղափաները հիմնված էին փիլիսոփայական և աստվածաբանական հիմնավորումների վրա, ոչ թե ապացույցների և փորձերի։ Այդ պատճառով ատոմի կառուցվածքի և վարքագծի մասին նրանց պատկերացումները սխալ էին։ Նրանք նաև չէին կարող համոզել, այսպիսով ատոմիզմը նյութի բնույթի վերաբերյալ բազմաթիվ տեսություններից մեկն էր։ Միայն 19-րդ դարում ատոմի գաղափարը ընդունվեց գիտնականների կողմից, երբ քիմիայում արվեցին այնպիսի հայտնագորցություններ, որոնք միայն կարող էին բացատրվել ատոմի գոյությամբ։

Ապացույցի վրա հիմնված առաջին տեսություն

Various atoms and molecules as depicted in Ջոն Դալթոն's A New System of Chemical Philosophy (1808).

1800-ական թվականների սկզբին Ջոն Դալթոնը ատոմի գաղափարի միջոցով է բացատրել այն, որ տարրերը միշտ փոխազդում են փոքր ամբողջ թվերի հարաբերությամբ։՚ Օրինակ՝ գոյություն ունի երկու անագի օքսիդ. մեկը՝ 88.1% անագ, 11.9% թթվածին, երկրորդը՝ 78.7% անագ, 21.3% թթվածին (համապատասխանաբար անագի օքսիդ(II) և անագի օքսիդ(IV))։ Սա նշանակում է, որ 100 գրամ միայն կարող է միանալ 13.5 կամ 27 գրամ թթվածնի հետ։ 13.5-ը և 27-ը կազմում եմ 1:2 հարաբերություն։ Այս փաստից ելնելով Դալթոնը եզրակացրեց, որ տարրերը փոխազդում են դիսկրետ միավորների (այլ կերպ ասած՝ ատոմների) ամբողջ թվի բազմապատիկներով։ Անագի օքսիդի պարագայում մեկ անագի ատոմը կարող է միանալ կամ մեկ, կամ երկու թթվածնի ատոմի հետ։[2]

Դալթոնը նաև հավատում էր, որ ատոմի տեսությունը կարող է բացատրել, թե ինչու է ջուրը տարբեր գազեր տարբեր հարաբերությամբ կլանում։ Օրինակ՝ նա գտավ, որ ջուրը ածխաթթու գազ շատ ավելի լավ է կլանում, քան ազոտ։[3] Դալթոնը կարծում էր, որ սա կապված է գազերի համապատասխան մասնիկների զանգվածների և դասավորության տարբերությունների հետ (ածխաթթու գազի մոլեկուլը (CO2) շատ ավելի մեծ և ծանր է ազոտի մոլեկուլից (N2))։

Բրոունյան շարժում

1827 թվականին բուսաբան Ռոբերտ Բրոունը ջրի մեջ ծաղկափոշու շարժը մանրադիտոկով ուսումնասիրելիս հայտնաբերեց, որ նրանք շարժվում են անկոնոն, այ երևույթը այժմ կոչվում է «Բրոունյան շարժում»։ Ենթադրվում էր, որ սրա պատճառը ջրի մոլեկուլների շարժն է։ 1905 թվականին Ալբերտ Այնշտայնը ապացուցեց այս մոլեկուլների և նրանց շարժման գոյությունը՝ բրոունյան շարժման առաջին վիճակագրական վերլուծությամբ։[4][5][6] Ֆրանսիացի ֆիզիկոս Ժան Բատիստ Պերրենը օգտագործել է Այնշտայնի աշխատանքները՝ ատոմների զանգվածն ու չափերը փորձնականորեն որոշելու համար։[7]

Ատոմի միջուկի կառուցվածք

Ատոմի միջուկի շառավիղը մոտ 100,000 անգամ փոքր է ատոմի շառավղից։ Չնայած միջուկի այդքան փոքր չափերին՝ դա էական դեր է կատարում։

Միջուկը բաղկացած է առանձին մասնիկներից, որոնք կոչվում են նուկլոններ։ Նուկլոնները երկու տեսակ են՝ պրոտոններ և նեյտրոններ։ Պրոտոնը դրական լիքավորված մասնիկ է, որի զանգվածը 1836 անգամ մեծ է էլեկտրոնի զանգվածից։ Պրոտոնի լիցքը հավասար էլեկտրոնի լիցքի մոդուլին՝

Տարբեր ատոմների միջուկները պարունակում են տարբեր թվով պրոտոններ։ Օրինակ՝ ջրածնի ատոմի միջուկն ունի միայն մեկ պրոտոն, թթվածնի ատոմի միջուկում դրանց թիվը 8 է, իսկ ուրանի միջուկում՝ 92։

Պրոտոնների թիվը միջուկում համընկնում է Մենդելեևի քիմիական տարրերի աղյուսակում տվյալ էլեմենտի կարգաթվի հետ։ Կարգաթվի հետ է համընկնում նաև ատոմում էլեկտրոնների թիվը։ Այսպիսով, միջուկում պրոտոնների թիվը համընկնում է նրա շուրջը շարժվող էլեկտրոնների թվի հետ, այդ պատճառով էլ ընդունված է ատոմում պրոտոնների և էլեկտրոնների թիվը նշանակել նույն տառով․ - պրոտոնների թիվը միջուկում։

Հասկացության ձևավորում

Ատոմի մասին հասկացությունները՝ որպես մատերիայի անբաժանելի և ամենափոքր մասնիկ, առաջին անգամ սահմանվել է հին հնդիկ և հույն փիլիսոփաների կողմից (ատոմիզմ17-րդ և 18-րդ դարերում քիմիկոսներին հաջողվեց փորձով ապացուցել այդ վարկածը՝ ցույց տալով, որ որոշ նյութեր չեն կարող ենթարկվել հետագա քայքայումների ավելի փոքր բաղկացուցիչ տարրերի քիմիական մեթոդների միջոցով։ Սակայն 19-րդ դարի վերջին և 20-րդ դարի սկզբին ֆիզիկոսները հայտնաբերեցին սուբատոմական մասնիկներ և առաջարկեցին ատոմի կառուցվածքը։ Դրանից հետո պարզ դարձավ, որ ատոմն ինքնին անբաժանելի չէ։

1860 թվականին Գերմանիայի Կարլսրուե քաղաքում ըեղի ունեցած Քիմիկոսների միջազգային կոնֆերանսում ընդունվեցին մոլեկուլի և ատոմի կառուցվածքի մասին հասկացությունների սահմանումներ։ Ատոմը քիմիական տարրի այն փոքրագույն մասնիկն է, որը մտնում է պարզ և բարդ նյութերի բաղադրության մեջ։

Տես նաև

Ծանոթագրություններ

  1. ChEBIEBI.
  2. Andrew G. van Melsen (1952). From Atomos to Atom. Mineola, N.Y.: Dover Publications. ISBN 0-486-49584-1.
  3. Dalton, John. "On the Absorption of Gases by Water and Other Liquids", in Memoirs of the Literary and Philosophical Society of Manchester. 1803. Retrieved on August 29, 2007.
  4. Einstein, Albert (1905). «Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen» (PDF). Annalen der Physik (German). 322 (8): 549–560. Bibcode:1905AnP...322..549E. doi:10.1002/andp.19053220806. Վերցված է 4 February 2007-ին.{{cite journal}}: CS1 սպաս․ չճանաչված լեզու (link)
  5. Mazo, Robert M. (2002). Brownian Motion: Fluctuations, Dynamics, and Applications. Oxford University Press. էջեր 1–7. ISBN 0-19-851567-7. OCLC 48753074.
  6. Lee, Y.K.; Hoon, K. (1995). «Brownian Motion». Imperial College. Արխիվացված է օրիգինալից 18 December 2007-ին. Վերցված է 18 December 2007-ին. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (օգնություն)
  7. Patterson, G. (2007). «Jean Perrin and the triumph of the atomic doctrine». Endeavour. 31 (2): 50–53. doi:10.1016/j.endeavour.2007.05.003. PMID 17602746.