Պարաբոլիկ հավասարումներ

Վիքիպեդիայից՝ ազատ հանրագիտարանից
Jump to navigation Jump to search

Պարաբոլիկ հավասարումներ, դիֆերենցիալ հավասարումների մասնավոր դաս։ Ոչ ստացիոնար գործընթացները նկարագրող հավասարումների մի տեսակներից։

Սահմանում[խմբագրել | խմբագրել կոդը]

Պարաբոլիկ հավասարման լուծման տեսողական ներկայացում(ջերմության փոխանցում)

Հաշվի առեք ֆունկցիայի մասշտաբային երկրորդ կարգի մասնակի դիֆերենցիալ հավասարման ընդհանուր ձևը։ Դիտարկենք սկալարային դիֆերենցիալ հավասարման ընդհանուր տեսքը, մասնավորապես՝ ֆունկցիայի նկատմամբ երկրորդ կարգի ածանցյալ ։

Ընդ որում հավասարումը գրված է սիմետրիկ տեսքով, այսինքն՝ ։ Այդ դեպքում հավասարմանը համարժեք քառակուսի ձևի տեսքի հավասարումը կլինի․

,

որտեղ .

A մատրիցան կոչվում է հիմնական գործակիցի մատրիցա։

Եթե ստացված ձևի արժեքն է (n-1,0), այսինքն ՝ A մատրիցան ունի մեկ սեփական արժեք, որը հավասար է զրոյի և n-1-ի, սեփական արժեքներն ունեն նույն նշանը, ապա հավասարումը կոչվում է պարաբոլիկ տիպի[1]։

Մեկ այլ, համարժեք սահմանում. Հավասարումը կոչվում է պարաբոլիկ, եթե այն կարող է ներկայացվել հետևյալ տեսքով․

,

որտեղ։  — էլիպսային օպերատոր, .

Պարաբոլիկ հավասարումների լուծում[խմբագրել | խմբագրել կոդը]

Միակ լուծումը գտնելու համար հավասարումը դիտարկվում է սկզբնական և սահմանային պայմանների հետ համատեղ։ Քանի որ երբ հավասարումը առաջին կարգի է, ապա սկզբնական պայմանը դրվում է որոնելի ֆունկցիայի վրա։

  • Պարաբոլիկ ինչպես նաև վերացական պարաբոլիկ հավասարումների լուծումներ գտնելու համար, կարող են կիրառվել օպերատորների կիսախմբի տեսությունը։
  • Անսահման տիրույթում պարաբոլիկ հավասարումների (Կոշիի խնդիրը պարաբոլիկ հավասարման համար) վերլուծական լուծման համար օգտագործվում է հատուկ ինտեգրալ բանաձև[2]։
  • Սահմանափակ տիրույթում պարաբոլիկ հավասարումների վերլուծական լուծման համար կարող է օգտագործվել Ֆուրյեի փոփոխական բաժանում մեթոդը։
  • Պարաբոլիկ հավասարումների թվային լուծման համար օգտագործվում են վերջավոր տարրերի մեթոդը, վերջավոր տարբերությունների մեթոդը, վերջավոր ծավալի մեթոդը, ինչպես նաև դրանց համակցությունները և լուծվող խնդրին հարմար թվային այլ մեթոդներ։

Առավելագույն սկզբունքը[խմբագրել | խմբագրել կոդը]

Պարաբոլիկ հավասարման նշված տեսքի համար

Լուծումները ընդունում են իրնց մեծագույն արժեքները երբ , կամ տրույթի սահմանին։

Պարաբոլիկ հավասարումների օրինակներ[խմբագրել | խմբագրել կոդը]

Ծանոթագրություններ[խմբագրել | խմբագրել կոդը]

  1. Тихонов А.Н, Самарский А.А. Уравнения математической физики (5-е изд.).. — Москва: Наука, 1977.
  2. Л.К. Мартинсон, Ю.И. Малов Дифференциальные уравнения математической физики. — Москва: МГТУ имени Н.Э. Баумана, 2002. — 368 с. — ISBN 5-7038-1270-4
  3. Соловейчик Ю.Г., Рояк М.Э., Персова М.Г. Метод конечных элементов для скалярных и векторных задач. — Новосибирск: НГТУ, 2007. — 896 с. — ISBN 978-5-7782-0749-9