Կորագիծ ինտեգրալ

Վիքիպեդիայից՝ ազատ հանրագիտարանից

Կորագիծ ինտեգրալ մաթեմատիկական անալիզի հիմնական հասկացություն, հարթ, ողորկ կորի (որը տրված է պարամետրական տեսքով) և նրա վրա որոշված անընդհատ ֆունկցիայի համար առաջին սեռի կորագիծ ինտեգրալ կարող է սահմանվել այսպես՝

։

Երկրորդ կարգի կորագիծ ինտեգրալ[խմբագրել | խմբագրել կոդը]

Երկրորդ կարգի կորագիծ ինտեգրալ կարող է սահմանվել այսպես.

բանաձևով։ Ինչպես նշված, այնպես էլ ավելի ընդհանուր բնույթի կորագիծ ինտեգրալները բնականորեն սահմանվում են նաև որպես որոշյալ ինտեգրալ գումարների սահմաններ։

Ենթադրենք հարթության վրա տրված է ուղղելի կորը, որի վրա ընտրված է ուղղություն՝ : կորը կետերով տրոհենք n մասերի:

-ի կոորդինատները նշանակենք : Տրոհման կետերը համարակալենք կորի վերցրած ուղղության հետ:

Նշանակենք նաև և , որտեղ :

Նշանակենք նաև :

ուղղի վրա վերցնենք կամայական կետ, որի կոորդինատները նշանակենք :

Դիտարկենք գումար՝ (1)

-ին անվանում են երկրորդ տիպի ինտեգրալի համար ինտեգրալային գումար:

Սահմանում: Եթե -ն 0-ի ձգտելիս ինտեգրալային գումարը, անկախ կորի տրոհման եղանակից և անկախ կետի ընտրությունից ունի վերջավոր սահման, ապա -ն կոչվում է ֆունկցիայի երկրորդ տիպի կորագիծ ինտեգրալ կորով:

Այն նշանակում ենք՝


Տես նաև[խմբագրել | խմբագրել կոդը]

Ծանոթագրություններ[խմբագրել | խմբագրել կոդը]

Այս հոդվածի կամ նրա բաժնի որոշակի հատվածի սկզբնական կամ ներկայիս տարբերակը վերցված է Քրիեյթիվ Քոմմոնս Նշում–Համանման տարածում 3.0 (Creative Commons BY-SA 3.0) ազատ թույլատրագրով թողարկված Հայկական սովետական հանրագիտարանից  (հ․ 5, էջ 642 CC-BY-SA-icon-80x15.png