Իրական թվեր

Վիքիպեդիայից՝ ազատ հանրագիտարանից
Իրական թվերի բազմության նշանը
Իրական թվերի ուղիղը

Մաթեմատիկայում, իրական թիվը անընդհատ ուղղի վրա ներկայացվող արժեք է։
Ռացիոնալ և իռացիոնալ թվերը միասին կազմում են իրական թվերի բազմությունը:Իրական թվերի բազմությունը նշանակում են R տառով: Իրական թվերի մեջ են մտնում բոլոր ռացիոնալ թվերը, ինչպես՝

այնպես էլ իռացիոնալ թվերը, օրինակ՝

  • √2=1.4142135՝ (երկուսի քառակուսի արմատը)` իռացիոնալ հանրահաշվական թիվ,
  • π=3.1415926535.․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․` տրանսցենդենտ թիվ:

Իրական թվերը կարելի է պատկերել որպես անվերջ երկար ուղիղ՝ թվային ուղիղ կամ իրական ուղիղի կետեր, որտեղ ամբողջ թվերին համապատասխան թվերը ինտերվալներ են։
Թվային առանցքի յուրաքանչյուր կետին համապատասխանում է որոշակի իրական թիվ և յուրաքանչյուր իրական թվին թվային առանցքի վրա համապատասխանում է որոշակի կետ: Յուրաքանչյուր իրական թիվ կարող է որոշվել հնարավոր անվերջ տասնորդական ներկայացմամբ (π-ի նման ), որտեղ յուրաքանչյուր հաջորդ թվանշանը չափվում է նախորդից մեկ տասնորդականով տարբերվող միավորներով։
Իրական ուղիղը կարելի է պատկերացնել որպես կոմպլեքս կոմպլեքս հարթության մաս, և համապատասխանաբար, իրական թվերը մտնում են կոմպլեքս թվերի մեջ որպես մասնավոր դեպք։