Իրական թվեր

Վիքիպեդիայից՝ ազատ հանրագիտարանից
Jump to navigation Jump to search
Իրական թվերի բազմության նշանը
Իրական թվերի ուղիղը

Մաթեմատիկայում, իրական թիվը անընդհատ ուղղի վրա ներկայացվող արժեք է։
Ռացիոնալ և իռացիոնալ թվերը միասին կազմում են իրական թվերի բազմությունը:Իրական թվերի բազմությունը նշանակում են R տառով։ Իրական թվերի մեջ են մտնում բոլոր ռացիոնալ թվերը, ինչպես՝

այնպես էլ իռացիոնալ թվերը, օրինակ՝

  • √2=1.4142135...՝ (երկուսի քառակուսի արմատը)` իռացիոնալ հանրահաշվական թիվ,
  • π=3.1415926535.․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․․` տրանսցենդենտ թիվ։

Իրական թվերը կարելի է պատկերել որպես անվերջ երկար ուղիղ՝ թվային ուղիղ կամ իրական ուղիղի կետեր, որտեղ ամբողջ թվերին համապատասխան թվերը ինտերվալներ են։
Թվային առանցքի յուրաքանչյուր կետին համապատասխանում է որոշակի իրական թիվ և յուրաքանչյուր իրական թվին թվային առանցքի վրա համապատասխանում է որոշակի կետ։ Յուրաքանչյուր իրական թիվ կարող է որոշվել հնարավոր անվերջ տասնորդական ներկայացմամբ (π-ի նման ), որտեղ յուրաքանչյուր հաջորդ թվանշանը չափվում է նախորդից մեկ տասնորդականով տարբերվող միավորներով։
Իրական ուղիղը կարելի է պատկերացնել որպես կոմպլեքս կոմպլեքս հարթության մաս, և համապատասխանաբար, իրական թվերը մտնում են կոմպլեքս թվերի մեջ որպես մասնավոր դեպք։
իրական թվեր դրանք կազմում են այն թվային բազմությունը, որն իր մեջ ներառում է բնական թվերը, ամբողջ թվերը, բանականն ու իռացիոնալը։ Դրանք նշվում են խորհրդանիշով ℝ կամ պարզապես Ռ իսկ գիտության, ճարտարագիտության և տնտեսագիտության մեջ նրանց տիրույթն այնպիսին է, որ «թվի» մասին խոսելիս համարվել է համարյա հաստատ, որ դա իրական թիվ է։

Իրական թվերն օգտագործվել են հին ժամանակներից, չնայած նրանց այդ անունը չի տրվել։ Այն ժամանակվանից, երբ Պյութագորասը մշակեց իր հայտնի թեորեմը, ի հայտ եկան թվեր, որոնք հնարավոր չէր ստանալ որպես բնական թվերի կամ ամբողջ թվերի տրիչ։

[1]


  1. Ֆիխտենգոլց Գ․ Մ․։ «Ֆիխտենգոլց․ Մաթեմատիկական անալիզի հիմունքները»։ sovorel.ru։ Վերցված է 2021-08-12