Գնդային ֆունկցիաներ

Վիքիպեդիայից՝ ազատ հանրագիտարանից
Jump to navigation Jump to search

Գնդային ֆունկցիաներ, ներկայացնում են Լապլասի հավասարման օրթոգոնալ լուծումների խմբի անկյունային մասը, արձանագրված գնդային կոորդինատներում։ Դրանք լայնորեն օգտագործվում են տիեզերական տարածքներում ֆիզիկական երևույթների ուսումնասիրման համար, որոնք սահմանափակվում են գնդային մակերեսներով և գնդային սիմետրիա ունեցող ֆիզիկական խնդիրների լուծման ժամանակ։ Գնդային ֆունկցիաները մեծ նշանակություն ունեն տեսության մասնակի ածանցյալներով դիֆերենցիալ հավասարումների և տեսական ֆիզիկայի, մասնավորապես, ատոմների էլեկտրոնային ուղեծրերի հաշվարկման խնդիրների, գեոիդների գրավիտացիոն դաշտի, մոլորակների մագնիսական դաշտի և մնացորդային ճառագայթման ինտենսիվության հաշվարկների համար։

Սահմանում[խմբագրել | խմբագրել կոդը]

Իրական գնդային ֆունկցիան Ylm, l=0…4 (վերևից ներքև), m=0…4 (ձախից աջ).

Գնդային ֆունկցիաներ հանդիսանում է գնդային կոորդինատային համակարգի Լապլասի օպերատորի սեփական ֆունկցիա (նշանակվում է )։ Նրանք կազմում են երկչափ գնդային ֆունկցիայի հարթությունում օրթոնորմավորված համակարգ․

,

որտեղ * նշանակում է կոմպլեքս զուգակցում, -Կրոնեկերի նշան։

Գնդային ֆունկցիան ունի , տեսքը․

որտեղ ֆունկցիան հանդիսանումէ հավասարման արմատ

և ունի հետևյալ տեսքը․

Այստեղ -Լեժանդրի միավորված բազմանդամներն են, իսկ -ֆակտորիալը։

Լեժանդրի բացասական ունեցող միավորված բազմանդամները գրառվում են․

Լապլասի հավասարման լուծումը գնդաձև համակարգերում ունի այսպես կոչված գնդային գործառույթ, որը ձեռք է բերվում գնդաձև ֆունկցիայի բազմապատկմամբ շառավղային հավասարման լուծման վրա։

Իրական ձև[խմբագրել | խմբագրել կոդը]

Գնդային ֆունկցիաների համար անկյունից կախվածության ձևը կոմպլեքս էքսպոնենտ է։ Օգտագործելով Էյլերի բանաձևը, կարելի է մուտքագրել իրական գնդաձև ֆունկցիաները։

Երբեմն դրանք ավելի հարմար է օգտագործել պայմանավորված նրանով, որ իրական գործառույթները կարող են ավելի տեսանելի ցուցադրվել, ի տարբերություն բարդի։

Հակառակ ձևափոխությունը․

Երբեմն իրական գնդաձև ֆունկցիաները անվանում են տարածքային, տեսերալ և սեկտորային[1]։

m > 0 ֆունկցիաները կախված են անկյան կոսինուսից, իսկ m < 0 -սինուսից։

Պտույտներ[խմբագրել | խմբագրել կոդը]

Ուումնասիրենք Էյլերի անկյամբ պտտված կոորդինատային համակարգը, որը ձևափոխում է միավոր վեկտորը -ի։ Ընդ որում, նոր կոորդինատային համակարգում վեկտրի անկյունները արտահայտվում են հետևյալ եղանակով․

Նոր կոորդինատային համակարգում և գործակցով գնդային ֆունկցիան ներկայանալի է դառնալու նույն գործակցով, բայց տարբեր -ով գծային կոմբինացիայի տեսքով։ Գծային կոմբինացիայում կոմպլեքս զուգակցվում են D-Վագների մատրիցաները[2];

Հարթ ալիքի տարալուծումը գնդային ֆունկցիաներով[խմբագրել | խմբագրել կոդը]

Կոմպլեք էքսպոնենտը կարող է ներկայացվել՝ ըստ գնդային ֆունկցիաների, տարալուծման տեսքով

Այստեղ - Բեսելի գնդային ֆունկցիան է։

Տես նաև[խմբագրել | խմբագրել կոդը]

  • Գնդային ֆունկցիաների ցանկը

Ծանոթագրություններ[խմբագրել | խմբագրել կոդը]

  1. Тихонов А. Н., Самарский, Александр Андреевич Уравнения математической физики
  2. M. A. Morrison, G. A. Parker. A guide to rotations in quantum mechanics. — Australian Journal of Physics, Vol. 40, pp. 465, 1987

Գրականություն[խմբագրել | խմբագրել կոդը]

  • Ландау Л.Д., Лифшиц Е.М.: Квантовая механика|1989}-математические дополнения

Հավելվածներ[խմբագրել | խմբագրել կոդը]

Արտաքին հղումներ[խմբագրել | խմբագրել կոդը]